Elivate: A Real-Time Assistant for Students and Lecturers as Part of an Online CS Education Platform

Suin Kim, Jae Won Kim, Jungkook Park, Alice Oh, KAIST

Elice: A Web-Based Programming Platform

- Elice is a web-based programming education platform allows students to code, chat, and view lecture videos
- We collected detailed student action logs with which we can identify each student's progress and strategically offer individualized help
- We studied machine learning summer camp where 1,000 students studied machine learning using the Elice

Contributions

- Mapping student actions to the educational taxonomy
 - Identified which actions should be mapped to which steps in the CS educational taxonomy
- Case study 1: How does TA's assistance affects students' traversal of the eduction taxonomy?
- Case study 2: Can we better predict students' future performance?

Elice and Machine Learning Summer Camp

4 weeks in August 2015 Each week: Introductory lecture + 8-10 programming exercises (total 35) Bi-weekly online TA assistance 1,000 Students, 10 TAs, 1 Lecturer 300 students in TA-Group 490 students in No-TA-Group 210 students in No-Group 24,437 chats, 350 posts, 893 comments 198,177 test runs

37,150 code submissions

· Lectures Covered

- Introduction to Web Programming
- Probability and Regression
- Dimensionality Reduction and Clustering
- Classification and Text Analysis
- Student Demographics
 - Female 27%, Male 73%
- 15-20 10%, 21-25 46%, 26-35 33%, 36- 10%

Fuller's CS-Specific Educational Taxonomy, Adopted to Elice

Create		Apply D	esign Model	Refactor
Apply	Ac Imple	laFest (ment	Debug slate	
none	Recognize	Trace	Present Analyze	Relate
	Remember	Understand	Analyze	Evaluate

- **Recognize**: Student reads the lecture material
- Design & Model: Understand and design a new solution structure to solve the problem
- Implement: Student translates the completed design to code
- Test & Debug: Detect and correct flaws by applying test cases or submitting the code
- **Refactor**: Submitting after getting a full credit
- \cdot **Present**: Sharing the knowledge through the three channels chat, tips, and board

Case Study 1: How does TA's assistance level affects students' traversal of the education taxonomy?

% students completed all exercises for each week

% students reached the levels at taxonomy

	Level 3	Level 2	Level 1
	TA-	No-TA-	No
	Group	Group	Group
# Students	107	100	34
ALL EXERCISES			
# Cycles	***4.32	3.59	3.79
Time per cycle (min)	3.87	3.97	3.54
Exercise 7			
# Cycles	10.07	8.58	8.07
Time per cycle (min)	5.29	5.14	6.39

Implement-Debug Cycles

Case Study 2: Can we better predict students' future performance?

0.170

0.454

0.875

- Quadratic Linear Regression
 - 8 attributes (5 proposed, 3 conventional)

Pearson's r value that shows correlation of

our proposed/conventional features and

two student performance metrics

Predicted Value

r = 0.914

Predicted Value

