
EliRank: A Code Editing History Based Ranking Model
for Early Detection of Students in Need
Jungkook Park

School of Computing, KAIST
Daejeon, Republic of Korea

pjknkda@kaist.ac.kr

Alice Oh
School of Computing, KAIST
Daejeon, Republic of Korea

alice.oh@kaist.edu

ABSTRACT
Research on programming education shows that novice program-
ming students benefit significantly from one-to-one tutoring. While
many systems propose to replicate the effectiveness of one-to-one
tutoring in large-scale classes, it remains a challenge to develop
systems with an approach to finding students who need the tutors’
help the most. In this paper, we explore the idea of predicting the
priority of students in need with a data-driven approach. Among
various metrics to calculate the priority of students in need, we
adopt time-on-task metric. Previous studies have found that exces-
sively long time-on-task can be used as an indication of students’
struggling. Aligned with this, we reduce the problem of finding
students with the highest priority to the problem of finding stu-
dents with the longest time-on-task. To solve the reduced problem,
we present EliRank, a ranking model that finds students with the
longest estimated time-on-task, using the students’ first few min-
utes of fine-grained code editing history. EliRank recommends
students in the descending order of estimated time-on-task, en-
abling tutors to efficiently monitor and find the students in need
at scale in real time. To evaluate the performance of EliRank, we
build and publish a new real-world dataset consisting of 15 pro-
gramming exercises solved by 4000+ students in an introduction
to programming class at a university. Unlike the currently avail-
able open code editing history datasets, our dataset contains code
editing operations at a character-level granularity to minimize the
loss of contextual information from students. We also introduce
diff-augmented abstract syntax tree (DAST), a novel structured
code representation that minimizes the loss of fine-grained code
change information during code parsing. The evaluation of EliRank
on our dataset shows that EliRank effectively finds students with
the longest estimated time-on-task, for early detection of students
in need. Also, we illustrate in depth (i) the effectiveness of DAST,
(ii) the potential to control the tradeoff between early detection and
the prediction accuracy of the model, and (iii) the transferability to
unseen programming exercise via zero-shot transfer learning.

CCS CONCEPTS
• Applied computing→ Computer-assisted instruction.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
L@S ’23, July 20–22, 2023, Copenhagen, Denmark.
© 2023 Association for Computing Machinery.
ACM ISBN 979-8-4007-0025-5/23/07. . . $15.00
https://doi.org/10.1145/3573051.3593387

KEYWORDS
code editing history, machine learning, programming education,
recommendation system

ACM Reference Format:
Jungkook Park and Alice Oh. 2023. EliRank: A Code Editing History Based
Ranking Model for Early Detection of Students in Need. In Proceedings
of the Tenth ACM Conference on Learning @ Scale (L@S ’23), July 20–22,
2023, Copenhagen, Denmark. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3573051.3593387

1 INTRODUCTION
Programming education research found that novice programmers
can learn programming more effectively when there is one-to-one
help by a tutor [24]. However, this kind of tutoring requires personal
interactions between students and tutors and is difficult to scale.
For example, in a MOOC environment, tutors can monitor and help
only a small fraction of students, as the number of students is much
greater than the number of tutors.

A number of tutoring systems have been proposed to repli-
cate the effectiveness of one-to-one tutoring in large-scale classes
[2, 7, 14]. One approach to such a system is automating tutors by
generating feedback automatically. These systems generate feed-
back from students’ submitted code by executing predefined unit
tests, clustering similar codes [22], or comparing the code to the
reference solution [27]. Another approach is building a recommen-
dation system that finds students in need among many students and
informs tutors. For example, [16] calculates an error quotient score
that characterizes how much a student struggles with syntax errors
while programming and suggests instructors use this score to sense
how the students are doing. Similarly, [14] builds a system that
shows students in the descending order of their activity frequency
to help tutors monitor the students at scale.

In this paper, we extend the recommendation system approach
by combining it with a data-driven methodology used by the auto-
mated tutor approach. We design a model for a recommendation
system to compute the priority of students in need and inform the
tutors of the highest priority students. To improve the recommen-
dation, we apply a data-driven methodology based on the students’
code editing history to rank the students in terms of their priority.
By combining two approaches, we aim to help tutors monitor and
manage students effectively at scale in real time while maintaining
the pedagogical effects of the human touch between tutors and
students.

Among various metrics to calculate the priority of students,
we focus on time-on-task metric. Psychologically, time-on-task
metric has two different interpretations; one is that the metric
has a positive correlation with the learner’s engagement, and the

https://doi.org/10.1145/3573051.3593387
https://doi.org/10.1145/3573051.3593387
https://doi.org/10.1145/3573051.3593387

L@S ’23, July 20–22, 2023, Copenhagen, Denmark. Jungkook Park and Alice Oh

other is that there is a negative correlation with the learner’s skill
level [12]. We focus on the negative correlation between the metric
and learners’ skill level, especially the observation that excessively
long time-on-task can indicate students’ struggling [20]. Aligned
with this, we can reduce the problem of finding students with the
highest priority to the problem of finding students with the longest
time-on-task.

To solve the reduced problem, we present EliRank, a ranking
model that finds students with the longest estimated time-on-task,
using the students’ first few minutes of fine-grained code editing
history. EliRank recommends students in the descending order of es-
timated time-on-task, enabling tutors to efficiently monitor and find
the students in need at scale in real time. Especially, EliRank adopts
a ranking model rather than a regression because the accurate cal-
culation of time-on-task is not our direct goal, but order matters.
EliRank cooperates with graph neural network (GNN), graph pool-
ing, and transformer encoder to extract information about code
semantics and students’ learning state from code editing histories.

To evaluate the performance of EliRank, we build a new real-
world dataset consisting of 15 programming exercises and over
4000 students. Unlike currently available open code editing his-
tory dataset with a large scale [11, 15, 31], our dataset contains
character-level editing operations that are more granular than com-
mit or submission levels. The fine granularity of the dataset has
multiple benefits; for example, a previous study found that the fine-
grained code change histories have rich information to understand
the intent behind the code better [25]. Also, the fine-grained logs
improve the estimation of time-on-task to better correlates with
students’ performance [20]. We expect that our dataset will pro-
vide rich information about code semantics and students’ learning
status, allowing machine learning models to calculate the priority
of students more accurately.

However, adopting our fine-grained dataset to existing machine
learning models such as [8, 13] is not trivial. The reason is that
code representations such as abstract syntax tree (AST) or data
flow used by those models can only parse syntactically correct code
for the given programming language. In contrast, the code created
from character-level editing operations does not always follow
that syntax. Although models can discard intermediate editing
operations that make syntactically incorrect code and use only
the remains, this results in the loss of fine-grained code change
information in the dataset.

To overcome this challenge, we introduce diff-augmented ab-
stract syntax tree (DAST), a variant of AST-based code representa-
tion that efficiently embeds code change information obtained from
the fine-grained code editing history. DAST augments nodes of
AST with an additional property that indicates whether any editing
operations in the history affect the nodes. With this property, DAST
powers EliRank by minimizing the loss of fine-grained code change
information even though some editing operations are discarded to
make the code AST parsable.

We evaluate the efficacy of EliRank using our real-world dataset.
With four research questions, we investigate (1) the overall perfor-
mance of EliRank, (2) the effectiveness of DAST, (3) the trade-off
between timeliness of early detection and model performance, and
(4) the transferability of the model for unseen programming exer-
cise.

The contributions of this paper are:
• Real-world open dataset that captures students’ fine-grained
code editing history in an introduction to programming class
at a university.
• The DAST code representation that efficiently augments AST
to minimize the loss of fine-grained code change information.
• The EliRank, a ranking model that takes the students’ first
few minutes of fine-grained code editing history and finds
students with the longest estimated time-on-task, for early
detection of students in need.

The source code and the dataset are publicly available on the
website.

2 RELATEDWORK
Our research is related to two major research areas: an intelligent
tutoring system for programming education and machine learning
for source codes.

Several studies propose a system supporting programming ed-
ucation on a large scale while preserving the effect of one-to-one
tutoring. One approach is to automate the tutor’s tasks, such as
grading submissions or giving feedback. For example, [22] proposed
a system that gives automated feedback to a cluster of codes using
predefined unit tests per programming exercises. Likewise, [23]
proposed a prototype called robot tutor, which automatically gen-
erates answers to the questions from students. In this paper, our
approach is in line with making tutors more efficient rather than
automation. With this approach, we investigate a way of scaling
the system without losing the pedagogical effects of the human
touch between tutors and students [3].

Another approach is to provide a system that enables tutors to
monitor and manage students efficiently. [14] is one such system
that uses a heuristic algorithm for visualizing students in a specific
order to make tutors monitor and help a large number of students
in real time. [16] designed a score that characterizes how much
a student struggles with syntax errors and suggests an interface
for tutors to monitor students by the calculated score. Meanwhile,
[1, 21] introduced machine learning models that predict students’
performance using various logs and find at-risk students based on
the predicted performance. These studies have a similar approach to
ours that help tutors monitor and find students by a specific metric,
where the metric is calculated from datasets. However, the main
differences are that our model makes a prediction based on the code
semantics, which is not directly visible in the dataset and focuses
on finding the priority order of students rather than calculating
exact metric values.

Several studies found that graph neural network models are ef-
fective on source code-related tasks such as code summarization
[18] or clone detection [5]. Recent studies also suggested improving
the model performance by expanding the model input from code
snapshots to the code history. For example, [8] proposed a system
that explicitly modeled the code difference between code commits
and achieved state-of-the-art performance on commit message gen-
eration tasks. In this paper, we also develop a graph neural network
model on structured code representations. However, our model
incorporates fine-grained code editing history with character-level
granularity, which is more granular than commit or submission

EliRank: A Code Editing History Based Ranking Model
for Early Detection of Students in Need L@S ’23, July 20–22, 2023, Copenhagen, Denmark.

levels. Furthermore, we propose a novel code representation spe-
cialized in the dataset to minimize the loss of fine-grained code
change information during AST parsing.

3 CODE EDITING HISTORY DATASET
To validate our data-driven approach, we build and publish a new
real-world dataset gathered from CS1 class at KAIST (Korea Ad-
vanced Institute of Science and Technology). This mandatory class
is open to all freshman regardless of their major, with an average
enrollment of 400 to 500 students per semester. The course consists
of a lecture component and a lab session component, and students
are required to attend one of each per week.

During the lab session, students are asked to solve five python
programming exercises within three hours. Once a student submits
their code, it is manually graded by any available tutor. Students are
permitted to leave the session after all of their submitted codes have
been confirmed as correct by the tutor. Throughout the session,
students are free to ask tutors any questions.

To collect dataset, we provide students with a web-based code
editor that allows them to edit, execute, and submit codes. While a
student is solving the exercises, the editor records character-level
editing operations and stores them in a database. The character-
level granularity is provided as the best effort and is not guaranteed
in the cases where copy and paste are used or the editor’s auto-
completion feature is invoked. Also, to reduce the server load in
heavy traffic situations, editing operations are merged if the interval
between consecutive operations is less than 100 milliseconds.

We collected our dataset from 15 python programming exer-
cises from the first three lab sessions of the class. The data spans
11 semesters, from Spring 2016 to Spring 2021, and includes code
editing histories from over 4000 students. Note that the lab sessions
were conducted offline from Spring 2016 to Fall 2019 and moved
online from Spring 2020 to Spring 2021 due to the COVID-19 pan-
demic.

In the dataset, we define code editing history as the sequence of
editing operations, and use Operational Transformation (OT) [28]
to efficiently represent editing operations with millisecond time
precision. The OT consists of 3 operations:
• skip (𝑎𝑚𝑜𝑢𝑛𝑡) : move the current cursor forward by 𝑎𝑚𝑜𝑢𝑛𝑡

characters.
• insert (𝑡𝑒𝑥𝑡) : insert 𝑡𝑒𝑥𝑡 at the current cursor position.
• delete (𝑡𝑒𝑥𝑡) : delete 𝑡𝑒𝑥𝑡 from the current cursor position.

For example, given a text “abcde”, applying the sequence of OTs
[skip(2), insert(“12”), delete(“𝑐”)] results in a text “ab12de”. Table 1
shows the example of code editing history data in the dataset.

To build a dataset, we applied the following preprocessing to
raw data. First, if the interval between two consecutive editing
operations exceeds 120 seconds, it is considered a different editing
session, and the interval is shortened to 120 seconds. This follows
the previous study [19] to calculate accurate time-on-task by remov-
ing inactive sessions, for example, students taking breaks. Second,
to exclude cases where the whole code is copied outside the edi-
tor, we exclude code with a shorter history than (1) less than 300
seconds, (2) less than ten editing operations, or (3) the lowest 5%
editing operations in the same exercise. Third, to exclude cases
where the editor is used for notepad purposes other than solving

Table 1: The example of code editing history data. Each edit-
ing operation is recorded as the sequence of Operational
Transformations with millisecond time precision.

Class ID bf95180dd756fd204fb01ce4916ae9323b19a3aa
Doc ID 10d9859fc620db615c8aa74e324f3805b0ae8877
Task ID P1
Offline? false
Created 2021-01-01 11:22:33.12345
Skeleton from cs1robots import *\n# Write your code here!
Edits[0] 1.000, [skip(48), insert(“\nx”)]
Edits[1] 4.404, [skip(50), insert(“=”)]
Edits[2] 10.645, [skip(51), insert(“10”)]
Edits[3] 11.378, [skip(51), delete(“1”), insert(“2”)]
Edits[...] . . .

Table 2: The statistics of 15 programming exercises in the
dataset after preprocessing. The numbers in the parenthesis
represent the standard deviation. 𝜌 represents the Pearson
correlation between the time-on-task and the number of
edits. 𝜌300 represents the Pearson correlation between the
time-on-task and the number of edits before the first 300
seconds.

ID N Avg. Edits Avg. Time (s) 𝜌 𝜌300

P1 4074 563.6 (242.9) 1217.4 (661.7) 0.702 -0.354
P2 3512 345.2 (120.9) 636.1 (304.5) 0.549 -0.338
P3 3822 434.5 (149.7) 681.2 (319.4) 0.559 -0.370
P4 3636 426.6 (178.5) 742.7 (384.0) 0.602 -0.294
P5 3273 733.2 (336.5) 1463.0 (841.5) 0.703 -0.299
P6 3661 535.6 (303.8) 1200.6 (721.3) 0.736 -0.199
P7 2341 329.1 (215.3) 731.7 (426.6) 0.604 -0.030
P8 4048 434.3 (188.8) 1046.2 (583.2) 0.692 -0.326
P9 2068 307.2 (237.9) 786.7 (509.7) 0.669 -0.011
P10 4133 871.9 (463.3) 2328.9 (1362.8) 0.797 -0.223
P11 3998 411.3 (179.9) 952.0 (495.6) 0.660 -0.352
P12 4039 483.2 (186.9) 936.7 (473.4) 0.635 -0.374
P13 3636 709.0 (413.9) 1579.2 (974.6) 0.748 -0.087
P14 4127 990.7 (467.1) 2436.8 (1296.0) 0.789 -0.165
P15 3672 313.9 (155.4) 867.6 (506.7) 0.696 -0.263

given exercises, we exclude code with a longer history than the
highest 95% editing operations in the same exercise or the AST-
parsed code has more than 300 nodes. The second and third steps
are primarily designed to exclude cases where the entire keystroke-
level history is not captured and is considered incomplete. After the
preprocessing, we calculate students’ time-on-task by measuring
the time between the first and the last editing operations.

Table 2 shows the statistics of the dataset. For each exercise, the
Pearson correlation coefficient 𝜌 between the number of editing

L@S ’23, July 20–22, 2023, Copenhagen, Denmark. Jungkook Park and Alice Oh

x
x 10

=

x 10

=

x
x 10

=

x 10

=

x x= x=10 x=20 x=10

x x= x=10 x=20 x=10

(a
)

fo
rw

ar
d

(b
)

b
ac

k
w

ar
d

x x= x=10 x=20 x=10

x
x 10

=

x 10

=

forward changes backward changes both

Figure 1: The process of building DAST from a code editing
history. The algorithm finds AST nodes that are affected by
forward and backward code changes. Then, each nodes are
annotated as one of four change states – forward, backward,
both, or none of them.

operations and time-on-task is between 0.5 and 0.8. However, in a
realistic lab session environment where students participate in real
time, the entire editing history is unavailable, and models can only
access the first few minutes of history. In that perspective, given
the first 300 seconds of the histories, the coefficient 𝜌300 between
the two entities becomes between −0.4 and 0, meaning a weak
negative or no correlation. This implies that the number of editing
operations cannot be used as a direct indicator of time-on-task in
the early stages of students’ participation and suggests that models
estimating time-on-task should consider other information, such
as code semantics.

In the dataset, data from offline and online lab sessions are mixed
because the data collection period spans the COVID-19 pandemic.
However, the measured statistics between the offline and the online
sessions show marginal differences. More specifically, the average
difference of two statistics – the average number of edits and the
average time-on-task – between the two environments show 4.85%
and 7.24%, respectively. Therefore, in this paper, we use the dataset
as one without distinguishing the two different environments.

4 DIFF-AUGMENTED ABSTRACT SYNTAX
TREE

We propose diff-augmented abstract syntax tree (DAST), a novel
AST-based code representation that efficiently embeds code change
information from a fine-grained code editing history. In addition to
the general AST node properties such as source code location and

node type, DAST adds two additional Boolean node properties 𝛿𝑓
and 𝛿𝑏 . Each new property represents whether the node is affected
by any forward (𝛿𝑓) or backward (𝛿𝑏) code changes in the editing
history.

More specifically, suppose two AST 𝐺1 and 𝐺2 parsed from two
different codes on the same code editing history. To simplify the
description, the method to choose the two codes from the history
will be described in the Section 5.1. Also, we assume that 𝐺1 is
located ahead of 𝐺2 in the editing history. Then, if any editing
operation in the history from 𝐺1 to 𝐺2 modifies the source code
location of AST node 𝑣1 ∈ 𝐺1, 𝛿𝑓 property of 𝑣1 becomes 𝑡𝑟𝑢𝑒
(Figure 1-(a)). Similarly, if any editing operation in the reversed
history from𝐺2 to𝐺1 modifies the source code location of AST node
𝑣2 ∈ 𝐺2, 𝛿𝑏 property of 𝑣2 becomes 𝑡𝑟𝑢𝑒 (Figure 1-(b)). By tracking
editing operations in both forward and backward directions, we
reduce the possibility of a situation where operations fail to find
affected nodes because the nodes are not created yet. For example,
in Figure 1-(a), the second editing operation [skip(2), insert(“10”)]
has no affected nodes because AST nodes for “+" and “10" are not
yet created in the previously parsed AST. In that situation, the
editing operation’s fine-grained information is discarded in the
forward path. However, in the backward path (Figure 1-(b)), the
same operation now has affected nodes, and the change information
from the operation is annotated in the nodes. This approach is
language-agnostic and nondestructive to the existing AST structure;
therefore, DAST could be applied as an in-place to existing AST-
based algorithms.

The new properties of DAST provide additional contextual infor-
mation beyond the code structure and semantics. This comes from
the granular nature of the dataset, where even the two identical
codes can produce different DASTs depending on their editing his-
tory. For example, suppose two ASTs with the same code and the
editing history of writing and deleting a specific code between them.
In such a situation, the two ASTs will be the same, whereas the two
DASTs will have identifiable nodes where the nodes with 𝛿𝑓 on one
side and the nodes with 𝛿𝑏 on the other side. The repetition of this
write-and-delete behavior in a short time range can be interpreted
as “applying the concept without real understanding” described in
the CS-specific educational taxonomy [10] and provides a signal to
find out where students are located on the learning path.

The algorithm for constructing DAST is done efficiently by avoid-
ing computationally expensive comparisons between ASTs. The
main idea is that the algorithm can track code locations modified
by OTs while building the mapping from the code locations to the
corresponding AST nodes. Algorithm 1 describes the pseudo-code
of building DAST when AST 𝐺 , code 𝐶 , and editing history 𝐻 are
given.

(1) The algorithm first calculates a mapping 𝑋 from code loca-
tions to AST node indexes. This process has a time complex-
ity of 𝑂 (|𝐶 | |𝐺 |).

(2) Let 𝑌 be a set of affected nodes.
(3) For each editing operation 𝑒 ∈ 𝐻 , we denote the sequence of

OTs in the operation as 𝑒𝑜𝑡𝑠 . Then, the set of affected nodes
is calculated by applying the following process to 𝑜𝑡 ∈ 𝑒𝑜𝑡𝑠
in sequence.

EliRank: A Code Editing History Based Ranking Model
for Early Detection of Students in Need L@S ’23, July 20–22, 2023, Copenhagen, Denmark.

Algorithm 1 An algorithm to identify affected nodes in AST 𝐺

when the code 𝐶 and the editing history 𝐻 are given
1: 𝑚𝑖𝑛𝑢𝑠 (𝑛) := a list [−1, ...,−1] with the length 𝑛
2: 𝑋 ←𝑚𝑖𝑛𝑢𝑠 (|𝐶 |)
3: for 𝑣 ∈ preorder(𝐺) do
4: 𝑋 [𝑣 .𝑐𝑜𝑑𝑒𝑆𝑡𝑎𝑟𝑡 : 𝑣 .𝑐𝑜𝑑𝑒𝐸𝑛𝑑] ← 𝑣 .𝑖𝑑

5: end for
6: 𝑌 ← {}
7: for 𝑒 ∈ 𝐻 do
8: 𝑋 ′ ← []
9: 𝑝 ← 0
10: for 𝑜𝑡 ∈ 𝑒𝑜𝑡𝑠 do
11: if 𝑜𝑡 is SKIP then
12: 𝑋 ′ ← 𝑋 ′ · 𝑋 [𝑝 : 𝑝 + 𝑜𝑡 .𝑎𝑚𝑜𝑢𝑛𝑡]
13: 𝑝 ← 𝑝 + 𝑜𝑡 .𝑎𝑚𝑜𝑢𝑛𝑡

14: else if 𝑜𝑡 is INSERT then
15: 𝑋 ′ ← 𝑋 ′ ·𝑚𝑖𝑛𝑢𝑠 (|𝑜𝑡 .𝑡𝑒𝑥𝑡 |)
16: 𝑌 ← 𝑌 ∪ {𝑋 [𝑝 − 1], 𝑋 [𝑝]}
17: else if 𝑜𝑡 is DELETE then
18: 𝑌 ← 𝑌 ∪ {𝑋 [𝑝 − 1], 𝑋 [𝑝], ..., 𝑋 [𝑝 + |𝑜𝑡 .𝑡𝑒𝑥𝑡 |]}
19: 𝑝 ← 𝑝 + |𝑜𝑡 .𝑡𝑒𝑥𝑡 |
20: end if
21: end for
22: 𝑋 ← 𝑋 ′ · 𝑋 [𝑝 :]
23: end for
24: 𝑌 ← 𝑌 \ {−1}
25: return 𝑌

• If 𝑜𝑡 is 𝑠𝑘𝑖𝑝 , there are no affected nodes. This process has
the time complexity of 𝑂 (1).
• If 𝑜𝑡 is 𝑖𝑛𝑠𝑒𝑟𝑡 , we mark the code location right before/after
the current cursor position, adding corresponding AST
nodes to𝑌 . This process has a time complexity of𝑂 (𝑙𝑜𝑔|𝐺 |).
• If 𝑜𝑡 is𝑑𝑒𝑙𝑒𝑡𝑒 , we mark the code location of the deleted text
and right before/after the deleted text, adding correspond-
ing AST nodes to 𝑌 . This process has a time complexity
of 𝑂 (|𝐶 |𝑙𝑜𝑔 |𝐺 |).

(4) Return the set of affected nodes 𝑌

The overall time complexity becomes 𝑂 (|𝐶 | |𝐺 | + 𝑁 |𝐶 |𝑙𝑜𝑔 |𝐺 |)
where 𝑁 := Σ𝑒∈𝐻 |𝑒𝑜𝑡𝑠 | is the total number of OTs in the editing
history.

5 CODE EDITING HISTORY BASED RANKING
MODEL

We present EliRank, a ranking model that takes the students’ first
few minutes of fine-grained code editing history and finds students
with the longest estimated time-on-task, for early detection of stu-
dents in need. Using Algorithm 1, EliRank converts code editing
history into a sequence of DAST while minimizing the loss of fine-
grained code change information from the history. Then, EliRank
adopts a graph neural network (GNN) and graph pooling algorithm
to extract graph embeddings from DASTs. Finally, with the trans-
former encoder and feedforward neural network (FNN), the graph
embeddings are compacted into a ranking score to calculate the

ranking loss to other editing histories. The overall architecture of
the model is shown in Figure 2.

Before describing each step of EliRank in detail, we first summa-
rize basic notations for editing history. 𝑒𝑖 denotes the 𝑖-th editing op-
eration in the editing history 𝐻 . The operation’s created timestamp
and OTs are denoted as 𝑒𝑡𝑠

𝑖
and 𝑒𝑜𝑡𝑠

𝑖
. The timestamp is recorded as

the relative time for the first operation in history, starting from 0.
𝑐𝑖 denotes a code snapshot at the time 𝑒𝑖 is recorded, corresponding
to the result of applying [𝑒𝑜𝑡𝑠

𝑗
|1 ≤ 𝑗 ≤ 𝑖] to an empty text.

5.1 AST parsing
EliRank parses editing histories on the dataset into the sequences
of ASTs. However, due to the character-level granularity of editing
operations, the parsing process is nontrivial, and two issues arise
during the process.

The first issue is that the granularity of editing operations needs
to be more consistent. For example, caused by the optimization
logic that merges consecutive editing operations if they are closer
than 100 milliseconds, a single editing operation can have OTs
that modify multiple characters or even words depending on the
keyboard typing speed. Similarly, editing operations can contain
arbitrarily long text when copy and paste from an external editor are
used. This issue introduces imbalances in data frequency depending
on students’ editing styles and requires normalization of granularity
for better model stability and performance.

The second issue is that not all code snapshots are AST parsable.
From the programming language perspective, the code must fol-
low a language-specific syntax to be a valid program. However, in
our code editor, there is no restriction on writing arbitrary text,
and editing operations are recorded without the awareness of the
language-specific syntax. Therefore, the code snapshots for each
editing operation result in invalid programs that the AST parser
cannot parse.

To mitigate the two issues, EliRank converts each editing history
into an intermediate format called representative code snapshots
before parsing it to ASTs. We define a representative code snapshot
as the last AST parsable code snapshot available at each timestamp,
dividing the entire editing history by a fixed time interval. More
specifically, for the fixed time interval 𝑠 , 𝑖-th representative code
snapshot 𝑐′

𝑖
:= 𝑐𝑟 (𝑖) where 𝑟 (𝑖) represents the index of the last AST

parsable code. Formally, 𝑟 (𝑖) satisfies the following properties; (i)
𝑒𝑡𝑠
𝑟 (𝑖) ≤ 𝑠 · 𝑖 , (ii) 𝑐𝑟 (𝑖) is AST parsable, (iii) ∀𝑗 : 𝑟 (𝑖) < 𝑗 ∧ 𝑒𝑡𝑠

𝑗
≤ 𝑠 · 𝑖 ,

𝑐 𝑗 is not AST parsable (Figure 2-(a)). With this definition, any code
editing history can be converted into the sequence of representative
code snapshots and then parsed into the sequence of ASTs.

5.2 DAST constructing
EliRank converts the sequence of ASTs into the sequence of DAST
using fine-grained editing operations in the history. This step aims
to compensate for the loss of fine-grained code change information
during the first AST parsing step and discover additional context
information that AST cannot represent.

To construct DAST 𝑔′
𝑖
for the 𝑖-th AST 𝑔𝑖 in the sequence, Algo-

rithm 1 is used with arguments as follows (Figure 2-(b)).

L@S ’23, July 20–22, 2023, Copenhagen, Denmark. Jungkook Park and Alice Oh

𝐹1
𝑔

𝐹2
𝑔

𝐹3
𝑔

𝐹𝑐𝑙𝑠

ranking score

code (𝑐1
′)

code (𝑐2
′)

code (𝑐3
′)

(a) AST parsing (b) DAST constructing (d) Graph Pooling (e) Transformer Encoder & FNN

ranking scores

{𝐸𝑗|𝑗 ≠ 𝑖, 𝑗 ∈ 𝑁}

calc. loss

(c) GNN

time

Pooling

=

x 7

𝑀𝑎𝑠𝑠𝑖𝑔𝑛
𝐴

𝑀𝑛𝑢𝑚𝑏𝑒𝑟
𝐴

...

𝑀𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
𝐴

AST node type

embedding

𝐹𝑣1
𝐿

𝐹𝑣2
𝐿 𝐹𝑣3

𝐿

𝑀4
𝐷

𝑀3
𝐷

𝑀2
𝐷

𝑀1
𝐷

Diff embedding

𝐹𝑣1

𝐹𝑣2 𝐹𝑣3

𝐹𝑔
GNN

time

𝑐1
′

𝑐2
′

𝑐3
′

𝑐4
′

𝑐5
′

𝑒1
𝑒2

𝑒3𝑒4
𝑒5

𝑒6

𝑒7

𝑒8

𝑒3, 𝑒4

ed
it

 o
p

er
at

io
n

s
(𝐸

𝑖
)

𝑐1
𝒄𝟐

𝑐3𝒄𝟒
𝑐5

𝒄𝟔

𝑐7

𝒄𝟖

AST parsable

𝑒3, 𝑒2

𝑒5, 𝑒4

𝑒7, 𝑒8

𝑒7, 𝑒6

𝑒5, 𝑒6

𝜙

𝜙

𝜙

𝜙

forward history

backward history

cutoff

Figure 2: The overall architecture of EliRank. EliRank takes a sequence of fine-grained editing operations. The sequence is
pipelined through (a) AST parsing, (b) DAST constructing, (c) GNN, (d) graph pooling, (e) transformer encoder & FNN, then
finally calculated as a ranking score.

Forward change property 𝛿𝑓 , the algorithm takes graph 𝑔𝑖 ,
code 𝑐′

𝑖
, and history [𝑒𝑜𝑡𝑠

𝑗
|𝑟−1 (𝑖) < 𝑗 ≤ 𝑟−1 (𝑖 + 1)]. Here, 𝑟−1 (𝑖)

represents the inverse function of 𝑟 (𝑖) that satisfies 𝑟−1 (𝑟 (𝑖)) = 𝑖 .
Backward change property𝛿𝑏 , the algorithm takes the same ar-

guments except for the reversed history reverse([(𝑒𝑜𝑡𝑠
𝑗
)−1 |𝑟−1 (𝑖 −

1) ≤ 𝑗 < 𝑟−1 (𝑖)]). Here, (𝑒𝑜𝑡𝑠
𝑗
)−1 is the inverse operation of 𝑒𝑜𝑡𝑠

𝑗

that satisfies apply(apply(𝑋, 𝑒𝑜𝑡𝑠
𝑗
), (𝑒𝑜𝑡𝑠

𝑗
)−1) = 𝑇 for any text 𝑋 .

This process does not involve direct comparisons between ASTs;
therefore, it can be done efficiently with polynomial time complex-
ity.

5.3 Graph Neural Network
For each DAST, EliRank produces the embeddings of DAST nodes
using GNN to handle the graph structure and the nodes’ features
simultaneously. Given a graph 𝐺 = (𝑉 , 𝐸), GNN calculates the
embedding 𝐹 𝑙𝑣 for the node 𝑣 ∈ 𝑉 in the 𝑙-th layer by (1). In the
equation, N(𝑣) represents a set of nodes connected to 𝑣 , Ψ𝑙 and
Φ𝑙 are differentiable functions, and AGG is a differentiable and
permutation invariant aggregation function.

𝐹 𝑙𝑣 = Ψ𝑙 (𝐹 𝑙−1𝑣 ,AGG{Φ𝑙 (𝐹 𝑙−1𝑣 , 𝐹 𝑙−1𝑢 , 𝐸𝑢,𝑣)}𝑢∈N(𝑣)) (1)

EliRank defines node feature as the AST node type index, for
example, 1 for 𝐼 𝑓 node, 2 for 𝐴𝑠𝑠𝑖𝑔𝑛 node, 3 for 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 node.
For notations, we use 𝑚 as the total number of AST node types

and 𝑇 (𝑣) as the function for mapping the AST node type of 𝑣 to a
number between 1 and𝑚. EliRank defines two randomly initialized
matrices;𝑀𝐴 ∈ R𝑚×𝑑𝐴 defines embeddings for each of AST node
type and 𝑀𝐴2𝐺 ∈ R𝑑𝐴×𝑑𝐺 resizes AST node type embedding to
fit into GNN unit size. Based on these notations, the initial GNN
embedding is denoted as 𝐹 0𝑣 := 𝑀𝐴

𝑇 (𝑣) ×𝑀
𝐴2𝐺 (Figure 2-(c)).

5.4 Graph Pooling
The node embeddings derived from the previous step are aggre-
gated into graph embeddings through GraphMultisetPooling[4],
one of the graph pooling algorithms focusing on memory and time
efficiency. This step makes the sequence of tree-structured embed-
dings into the sequence of embedding vectors, allowing various
sequence-based machine learning models to be used afterward.

From the observation of the dataset, we found that fine-grained
editing operations between two representative code snapshots af-
fect less than 10% of the entire AST on average (Table 3). To reduce
the information redundancy from the unaffected nodes and make
the pooling algorithm give more attention to the affected nodes,
EliRank models the DAST properties 𝛿𝑓 and 𝛿𝑏 in the algorithm.
This is done by adding a diff embedding matrix𝑀𝐷 ∈ R4×𝑑 to the
node embeddings before the algorithm pools the nodes.

EliRank: A Code Editing History Based Ranking Model
for Early Detection of Students in Need L@S ’23, July 20–22, 2023, Copenhagen, Denmark.

Table 3: The statistics for the number of affected nodes in the
dataset when the history is truncated to the first 300 seconds.
The affected node is calculated using DAST constructing al-
gorithm. The ratio is calculated for each ASTs.

ID Avg. # Nodes Avg. # Affected Nodes Avg. Ratio
P1 43.97 2.54 9.18%
P2 47.61 1.87 7.92%
P3 69.67 1.77 4.49%
P4 60.61 2.25 5.63%
P5 70.01 3.87 7.03%
P6 61.09 3.20 6.98%
P7 81.22 3.66 5.75%
P8 49.81 2.37 5.78%
P9 77.51 3.07 5.13%
P10 56.97 2.57 5.63%
P11 42.94 2.09 7.36%
P12 59.73 2.50 6.07%
P13 87.80 3.72 5.26%
P14 57.84 2.53 4.26%
P15 83.50 2.04 3.31%

𝐹𝑣 =


𝐹𝐿𝑣 ⊕ 𝑀𝐷

4 , 𝛿𝑓 (𝑣) ∧ 𝛿𝑏 (𝑣)
𝐹𝐿𝑣 ⊕ 𝑀𝐷

3 , 𝛿𝑏 (𝑣)
𝐹𝐿𝑣 ⊕ 𝑀𝐷

2 , 𝛿𝑓 (𝑣)
𝐹𝐿𝑣 ⊕ 𝑀𝐷

1 , otherwise

(2)

After the diff embedding is added to the node embeddings, the
graph embedding for 𝑖-th DAST 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖) is derived as follows
(Figure 2-(d)):

𝐹
𝑔

𝑖
= Pooling({𝐹𝑣}𝑣∈𝑉𝑖 , 𝐸𝑖) (3)

5.5 Transformer Encoder & Feedforward Neural
Network

Transformer encoder [29] and feedforward neural network (FNN)
convert the sequence of graph embeddings from the previous step
to a ranking score. EliRank uses 𝑐𝑙𝑠 vector, a randomly initialized
and appended to the input sequence, to aggregate the whole se-
quence of the embeddings into a single dense vector [17]. Also,
to make the encoder assign position-aware attention, we add dy-
namic positional encoding 𝑃 ∈ R |𝐶′ |×𝑑 to the input sequence. As
a result, the encoder outputs the embeddings of the sequence as
𝑅𝑝𝑟𝑒 = Transformer([𝐹𝑐𝑙𝑠 , 𝐹

𝑔

1 ⊕ 𝑃1, . . . , 𝐹
𝑔

|𝐶′ | ⊕ 𝑃 |𝐶′ |]). Among the

output embeddings, we only use 𝑅𝑝𝑟𝑒
𝑐𝑙𝑠

, which is the embedding of
𝑐𝑙𝑠 vector. Finally, FNN takes 𝑅𝑝𝑟𝑒

𝑐𝑙𝑠
and produces a single ranking

score 𝑟 = 𝐹𝑁𝑁 (𝑅𝑝𝑟𝑒
𝑐𝑙𝑠
) ∈ R (Figure 2-(e)).

5.6 Loss function
EliRank applies ListMLE[30] as a loss function to optimize EliRank.
With ListMLE, losses are minimized when the order of the predicted
ranking scores follows the same order as the ground truth. Conse-
quently, the optimization of EliRank becomes easier than solving a
regression problem of precisely predicting the ground truth.

To train EliRank, we use truncated code editing histories as
input and time-on-task metric as output. The truncation on input
simulates a realistic lab session environment where complete code
editing histories are yet to be available as students participate in
real time. For each training epoch, the optimizer creates a random
batch of students’ truncated code editing histories and calculates
the ranking scores of each using EliRank. Then, ListMLE calculates
losses by checking the correctness of the order of the ranking scores.

6 EVALUATION
In this section, we evaluate EliRank with the fine-grained code
editing history dataset. We indirectly validate the performance of
EliRank by measuring how accurately EliRank finds students with
the longest time-on-task, instead of directly calculating the accuracy
of finding students in need. The main reason is that the dataset
lacks explicit signals of the need for assistance. Furthermore, even
if such explicit signals supplement the dataset, EliRank cannot rely
on that signals, as students may not "raise a hand" even if they are
stuck, and our motivation to find such students proactively. Instead,
as finding the students with the highest priority (i.e., the longest
estimated time-on-task) can still benefit tutors by reducing the
number of candidates to monitor proactively in large-scale classes,
we evaluate EliRank from the perspective of its recommendation
performance.

We designed the experiments to examine the following four
research questions:
• RQ1: How does EliRank perform compared to heuristic algo-
rithms to find students with the highest priority?
• RQ2: How does DAST improve the performance of EliRank?
• RQ3: How much code editing history does EliRank need to
make a prediction?
• RQ4: How does EliRank perform under the cold start situa-
tion?

6.1 Experiment Setup
For each programming exercise, we split the dataset randomly to
prepare a training set, validation set, and testing set, where the
proportions of each are 70%, 15%, and 15%. Unless explicitly stated,
we train and validate the model with the aggregated set across all
15 programming exercises and test with the set per exercise. We
test the model per exercise because the difference in the difficulty
of exercises causes the different distribution of ground truth (i.e.,
time-on-task), resulting in the order of ranking scores being valid
only inside each exercise.

We measure the normalized discounted cumulative gain (NDCG)
metric, widely used for ranking problems, to test the model’s per-
formance. The NDCG becomes 1.0 when the model produces rank-
ing scores that order students in perfect order and get penalties
when the order mismatches. The penalty from a mismatched or-
der is calculated with two properties; (i) the amount of penalty is

L@S ’23, July 20–22, 2023, Copenhagen, Denmark. Jungkook Park and Alice Oh

Table 4: The 𝑁𝐷𝐶𝐺 score for the baselines. Welch’s t-test is used to measure the statistical significance of each pair of models.
The score in bold shows the significantly (𝑝 < 0.01) best score compared to all other models.

Model P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

300s cutoff
Random 0.852 0.865 0.854 0.840 0.831 0.836 0.837 0.852 0.822 0.839 0.847 0.859 0.836 0.844 0.835
EvPerSec 0.837 0.847 0.831 0.829 0.815 0.808 0.844 0.835 0.804 0.821 0.818 0.841 0.825 0.838 0.822

EvPerSecNeg 0.872 0.873 0.878 0.873 0.856 0.843 0.829 0.864 0.793 0.857 0.876 0.849 0.846 0.855 0.857
EliRank 0.893 0.918 0.903 0.891 0.872 0.881 0.906 0.898 0.858 0.866 0.869 0.895 0.880 0.873 0.901

600s cutoff
Random 0.855 0.866 0.851 0.843 0.839 0.835 0.842 0.855 0.808 0.842 0.843 0.856 0.848 0.846 0.842
EvPerSec 0.871 0.915 0.884 0.889 0.838 0.850 0.886 0.879 0.849 0.837 0.869 0.876 0.850 0.838 0.870

EvPerSecNeg 0.808 0.803 0.791 0.779 0.791 0.775 0.772 0.789 0.730 0.810 0.789 0.795 0.780 0.825 0.778
EliRank 0.903 0.949 0.932 0.902 0.878 0.898 0.941 0.911 0.898 0.881 0.901 0.914 0.886 0.874 0.922

900s cutoff
Random 0.857 0.866 0.851 0.841 0.828 0.834 0.851 0.849 0.817 0.846 0.840 0.852 0.835 0.847 0.843
EvPerSec 0.889 0.958 0.936 0.919 0.842 0.880 0.941 0.905 0.889 0.849 0.892 0.906 0.872 0.843 0.902

EvPerSecNeg 0.788 0.798 0.785 0.771 0.768 0.758 0.763 0.777 0.720 0.786 0.773 0.781 0.760 0.804 0.765
EliRank 0.923 0.973 0.950 0.945 0.888 0.913 0.954 0.930 0.914 0.892 0.919 0.933 0.904 0.876 0.944

propositional to the ground truth of the misordered item, and (ii)
logarithmically increases if the misordered position is close to the
first position. These properties of NDCG perfectly fit our situation,
as (i) we aim to find the students with the longest time-on-task and
(ii) finding the students with high priority is more important than
those with low priority. We repeat all experiments with different
random seeds five times and report their averaged NDCG scores.

We apply time-based masking to the dataset called “cutoff”. The
cutoff simulates a real-world lab session where students’ complete
editing histories are unavailable until they finish the session. We
generalize the cutoff by making the model see only a part of editing
operations; for example, 𝑥 ↔ 𝑦 cutoff remains editing operations
with timestamps between 𝑥 and𝑦 only. For simplicity, we abbreviate
the notation 0↔ 𝑦 cutoff to 𝑦 cutoff. Various cutoff configurations
simulate different situations where a trade-off exists between the
timeliness of early detection and the amount of available informa-
tion from the editing histories. In that sense, we try at least two
different cutoff configurations for each experiment.

To train EliRank, we apply the following model configurations.
The AST parsing process uses the fixed time interval 𝑠 = 15. The
AST node type embedding matrix 𝑀𝐴 uses 𝑑𝐴 = 8. For GNN,
we use GCN2 [6] with embedding size 𝑑𝐺 = 32 and layer count
𝐿 = 8. The graph pooling uses the default settings provided by
PyG implementation [9], except that the size of hidden units and
output units are reduced to 16. The transformer encoder uses 16 for
the embedding size, four heads for multi-head attention, and two
feedforward layers. FNN uses two ReLU layers with output sizes
16 and 1, respectively.

6.2 RQ1: Overall Performance
To evaluate the overall performance of EliRank, we measured the
performance of three heuristic algorithms that find students in
need.

Random algorithm computes ranking score randomly. Since
the minimum value of the NDCG metric depends on the dataset,
we can get a sense of the model’s lowest performance through this
algorithm.

EvPerSec algorithm [14] computes ranking score as the fre-
quency of editing operations, giving higher weight to the recent
operations. In other words, the ranking score is defined as 𝑟 :=∑
𝑥∈𝐸,𝑥𝑡𝑠≤𝑇 𝑐 𝑒−𝜆 (𝑇

𝑐−𝑥𝑡𝑠) where 𝐸 is the editing history, 𝑇𝑐 is the
cutoff value, and 𝜆 is a constant to determine how much to penalize
the old operation. We use 𝜆 = 0.1 to follow the original paper. We
use this algorithm as the baseline because it is designed to achieve
the same goal as ours, prioritizing students in need for tutors.

EvPerSecNeg algorithm computes ranking score as the multiply
of −1 to the score from EvPerSec. This algorithm models situations
in which students frequently experience a pause when they are
struggling [26], or their engagement drops.

Table 4 summarizes the NDCG score of EliRank and the three
heuristics. In all cases except one, EliRank outperforms all the
heuristics with statistical significance (𝑝 < 0.01 from Welch’s t-
test). Also, the performance of EliRank shows a tendency for the
performance to increase as the length of available editing histories
increases, which is consistent with our assumption that fine-grained
editing history plays a crucial role in understanding code and stu-
dents. For the result on P11 and 300s cutoff, EvPerSecNeg shows
the best score over EliRank, and we conjecture that there was in-
sufficient data to train EliRank completely. Further investigation
on this case is in the Transferability section.

EliRank: A Code Editing History Based Ranking Model
for Early Detection of Students in Need L@S ’23, July 20–22, 2023, Copenhagen, Denmark.

6.3 RQ2: Effectiveness of DAST

Table 5: The 𝑁𝐷𝐶𝐺 score for different code representations.
The score in bold shows the significantly best scorewithin the
same cutoff. ∗𝑝 < 0.05, ∗∗𝑝 < 0.01, ∗∗∗𝑝 < 0.001 from Welch’s
t-test.

300s cutoff 600s cutoff 900s cutoff
ID AST DAST AST DAST AST DAST
P1 0.889 0.893 0.907 0.903 0.915 0.923
P2 0.907 ∗∗∗0.918 0.934 ∗∗0.949 0.961 ∗∗∗0.973
P3 0.904 0.903 0.925 ∗∗0.932 0.947 0.950
P4 0.885 0.891 0.901 0.902 0.928 ∗∗0.945
P5 0.864 ∗0.872 0.877 0.878 0.893 0.888
P6 0.876 0.881 0.888 0.898 0.907 0.913
P7 0.899 ∗∗∗0.906 0.943 0.941 0.953 0.954
P8 0.889 ∗0.898 0.910 0.911 0.935 0.930
P9 0.842 ∗∗∗0.858 0.887 ∗0.898 0.902 ∗∗0.914
P10 0.860 ∗∗0.866 0.874 0.881 0.890 0.892
P11 0.868 0.869 0.897 0.901 0.908 ∗∗0.919
P12 0.887 ∗0.895 0.914 0.914 0.936 0.933
P13 0.858 ∗∗∗0.880 0.880 ∗0.886 ∗0.914 0.904
P14 0.858 ∗∗∗0.873 0.874 0.874 0.879 0.876
P15 0.884 ∗∗0.901 0.916 0.922 0.935 0.944

Table 5 summarizes the results of the ablation study on DAST.
The effectiveness of DAST is maximized at the 300s cutoff, and the
difference between AST and DAST becomes indistinguishable as
the length of available code history increases. This verifies that
DAST effectively encodes the fine-grained code change informa-
tion, especially when there is not enough information from code
snapshots. Also, the results emphasize the importance of DAST on
our goal, which is the early detection of students in need, since
models should keep the required length of editing history as short
as possible for early detection.

6.4 RQ3: Cutoff Configuration
Table 6 summarizes the result of different cutoff configurations.
We designed two configurations to see two different aspects of the
cutoff configuration. The first configuration excludes the cutoff po-
sition’s effect and examines the cutoff length’s effect by comparing
the 750↔ 900 cutoff with the 0↔ 900 cutoff. On the other hand,
the second configuration compares the 150↔ 300 cutoff with the
750↔ 900 cutoff to examine the effect of the cutoff position.

The first results show that the longer the cutoff length, the better
the performance of the EliRank. This result also validates our edit-
ing history-based approach to finding students in need since the
last snapshot of the code alone – the extreme case that the cutoff
length becomes zero – shows sub-optimal performance. However,
depending on the exercises, the NDCG scores between the two
configurations do not show statistical significance. From this, we

Table 6: The 𝑁𝐷𝐶𝐺 score for different cutoff configurations.
The score in bold shows the significantly best scorewithin the
same cutoff configuration. ∗𝑝 < 0.05, ∗∗𝑝 < 0.01, ∗∗∗𝑝 < 0.001
formWelch’s t-test.

Fixed Cutoff Position Fixed Cutoff Length
ID 750↔ 900 0↔ 900 150↔ 300 750↔ 900
P1 0.925 0.923 0.893 ∗∗∗0.925
P2 0.966 ∗∗0.973 0.922 ∗∗∗0.966
P3 0.944 ∗0.950 0.902 ∗∗∗0.944
P4 0.940 0.945 0.888 ∗∗∗0.940
P5 0.890 0.888 0.874 ∗∗∗0.890
P6 0.915 0.913 0.885 ∗∗∗0.915
P7 0.941 ∗∗∗0.954 0.902 ∗∗∗0.941
P8 0.924 0.930 0.894 ∗∗∗0.924
P9 0.911 0.914 0.856 ∗∗∗0.911
P10 0.883 ∗0.892 0.867 ∗∗0.883
P11 0.911 ∗0.919 0.865 ∗∗∗0.911
P12 0.932 0.933 0.891 ∗∗∗0.932
P13 0.899 0.904 0.880 ∗∗∗0.899
P14 0.875 0.876 0.872 0.875
P15 0.933 ∗∗0.944 0.901 ∗∗∗0.933

found the possibility of future improvements in fine-tuning the cut-
off length on a per-exercise basis for efficiency while minimizing
model performance degradation.

The second result shows that EliRank performs better as the
cutoff position goes backward. This is natural since the degree
of uncertainty decreases as the degree of completion of the code
increases. However, for effective early detection of students in need,
it is necessary to set the cutoff position close to 0, indicating that
the tradeoff between the model’s performance and early detection
needs to be carefully adjusted.

6.5 RQ4: Transferability
Table 7 shows experimental results for three training strategies to
examine the transferability of the model.

Individual strategy trains models per exercise. Each model
takes training data and validation data from the selected exercise
only. There is no parameter share between the models for different
exercises.

Global strategy is a default strategy that trains a single global
model with training data from all exercises.

Transfer strategy trains models per exercise. Each model takes
training and validation data from all exercises except the selected
exercise. This strategy examines zero-shot transfer learning.

In all cases, the global strategy shows the best or no statistical
significance to the best. This implies that EliRank, with the global
strategy, effectively learns exercise-specific and shared information
across all exercises. Also, we found that the effect of the shared
information becomes noticeable, especially when the short cutoff

L@S ’23, July 20–22, 2023, Copenhagen, Denmark. Jungkook Park and Alice Oh

Table 7: The 𝑁𝐷𝐶𝐺 score for the individual (𝑆𝑖𝑛𝑑), the global
(𝑆𝑔𝑙𝑜𝑏𝑎𝑙), and the transfer (𝑆𝑡𝑟𝑎𝑛𝑠) strategies. The score in bold
shows the best score. The significance is calculated to the
strategy of the best score within the same cutoff configura-
tion. ∗𝑝 < 0.05, ∗∗𝑝 < 0.01, ∗∗∗𝑝 < 0.001 fromWelch’s t-test.

300s cutoff 600s cutoff
ID 𝑆𝑖𝑛𝑑 𝑆𝑔𝑙𝑜𝑏𝑎𝑙 𝑆𝑡𝑟𝑎𝑛𝑠 𝑆𝑖𝑛𝑑 𝑆𝑔𝑙𝑜𝑏𝑎𝑙 𝑆𝑡𝑟𝑎𝑛𝑠

P1 ∗∗0.882 0.893 0.888 0.900 0.903 0.901
P2 0.913 0.918 ∗0.914 ∗0.937 0.949 0.948
P3 ∗0.900 0.903 0.901 ∗0.928 0.932 0.930
P4 0.882 0.891 0.889 0.904 0.902 0.902
P5 ∗∗0.862 0.872 0.871 ∗∗0.864 0.878 0.879
P6 ∗0.868 0.881 0.884 ∗0.885 0.898 0.893
P7 0.903 0.906 0.901 0.912 0.941 0.944
P8 ∗∗∗0.884 0.898 0.896 0.908 0.911 0.907
P9 ∗0.843 0.858 0.855 ∗0.884 0.898 0.899
P10 0.865 0.866 0.866 0.874 0.881 0.881
P11 0.877 0.869 0.868 0.903 0.901 ∗0.886
P12 0.890 0.895 0.891 0.921 0.914 0.912
P13 ∗∗0.862 0.880 0.878 0.887 0.886 0.885
P14 ∗∗0.858 0.873 0.874 0.874 0.874 0.872
P15 ∗∗0.883 0.901 0.898 ∗∗0.909 0.922 ∗0.915

configuration is applied, where there is a lack of exercise-specific
information.

One remarkable result is that the transfer strategy is compara-
ble to the global strategy in most cases. This result suggests that
EliRank can perform even under the cold start situations where
unseen programming exercises or programming exercises with few
participants are given.

We found one more interesting result in the performance of
the individual strategy on P11. Unlike other cases, the individual
strategy on P11 shows the best score among other strategies. This
result shows that if an exercise has a unique characteristic that
does not share with other exercises, the transferability of the model
would be limited. Nevertheless, this limitation will be mitigated
if the amount of data becomes enough based on the observation
that the difference between the individual and the global strategies
is statistically non-significant and decreases as the cutoff length
increases.

6.6 Limitations
One limitation of our study is that the efficacy of EliRank is indi-
rectly evaluated rather than directly calculating the accuracy of
how correctly the model finds students in need. The main reason is
that, as mentioned at the beginning of this section, our dataset lacks
explicit signals of the need for assistance. Moreover, such explicit
signals are not enough to evaluate EliRank because the dataset does
not reflect the students who do not “raise their hands" even if they
are struggling, and our primary goal is to find them proactively with
a data-driven approach. Some of the previous studies [1, 21] define

struggling students with predicted exam scores or grades. However,
their evaluation objective differs from ours because EliRank aims
to find struggling students per exercise, not to find students to be
failed at the end of the course.

One possible direction to supplement the evaluation is a qual-
itative analysis of tutor and student experiences in the tutoring
interface using EliRank. However, as investigated in [14], designing
such a tutoring interface for monitoring students requires consider-
ation of various design factors and goals that affect the experience
of tutors and students. We considered this to be part of future work
beyond our focus on the model.

7 CONCLUSION
We present EliRank, a ranking model that takes the first few min-
utes of fine-grained code editing history and predicts the priority of
the students, for early detection of students in need. EliRank adopts
GNN, graph pooling, and transformer encoder for its prediction
and cooperates with DAST to minimize the loss of keystroke-level
code change information. We evaluate EliRank with the real-world
dataset consisting of fine-grained code editing histories from 15
programming exercises and 4000+ students in an introduction to
programming class at a university. The performance of EliRank is
assessed indirectly by measuring the NDCG score of recommended
students prioritized by their estimated time-on-task. The result
shows that EliRank effectively finds students with the highest prior-
ity, showing the possible benefits on tutors by reducing the number
of candidates to monitor proactively in large-scale classes. Also, the
evaluation showed (i) the effectiveness of DAST, (ii) the potential to
control the tradeoff between early detection and the performance
of the model, and (iii) the transferability to unseen programming
exercises via zero-shot transfer learning.

EliRank currently applies simple models to mainly focus on
validating our dataset and the approach instead of maximizing
performance. Therefore, as a future direction, we can improve the
performance of EliRank by combining more sophisticated machine-
learning models. For example, EliRank can incorporate pre-training
models such as [13], different GNN and graph pooling methods, or
different sequence-based models for better prediction.

Also, our contributions to the dataset, DAST, and EliRank are
not limited to a specific task, i.e., predicting the priority of students
in need. Instead, these contributions can be easily extended to the
broad spectrum of software engineering topics.

8 ACKNOWLEDGMENTS
The authors want to thank Elice for supporting us develop and
operate a web platform for dataset collection.

REFERENCES
[1] Alireza Ahadi, Raymond Lister, Heikki Haapala, and Arto Vihavainen. 2015.

Exploring machine learning methods to automatically identify students in need
of assistance. In Proceedings of the eleventh annual international conference on
international computing education research. 121–130.

[2] Umair Z Ahmed, Nisheeth Srivastava, Renuka Sindhgatta, and Amey Karkare.
2020. Characterizing the pedagogical benefits of adaptive feedback for com-
pilation errors by novice programmers. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering: Software Engineering Education
and Training. 139–150.

[3] Susan A Ambrose, Michael W Bridges, Michele DiPietro, Marsha C Lovett, and
Marie K Norman. 2010. How learning works: Seven research-based principles for

EliRank: A Code Editing History Based Ranking Model
for Early Detection of Students in Need L@S ’23, July 20–22, 2023, Copenhagen, Denmark.

smart teaching. John Wiley & Sons.
[4] Jinheon Baek, Minki Kang, and Sung Ju Hwang. 2020. Accurate Learning of

Graph Representations with Graph Multiset Pooling. In International Conference
on Learning Representations.

[5] Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, and Wei Wang.
2019. Simgnn: A neural network approach to fast graph similarity computation.
In Proceedings of the Twelfth ACM International Conference on Web Search and
Data Mining. 384–392.

[6] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. 2020.
Simple and deep graph convolutional networks. In International Conference on
Machine Learning. PMLR, 1725–1735.

[7] Yan Chen, Jaylin Herskovitz, Gabriel Matute, April Wang, SangWon Lee, Walter S
Lasecki, and Steve Oney. 2020. EdCode: Towards Personalized Support at Scale for
Remote Assistance in CS Education. In 2020 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). IEEE, 1–5.

[8] Jinhao Dong, Yiling Lou, Qihao Zhu, Zeyu Sun, Zhilin Li, Wenjie Zhang, and Dan
Hao. 2022. FIRA: Fine-Grained Graph-Based Code Change Representation for
Automated Commit Message Generation. In 2022 IEEE/ACM 44th International
Conference on Software Engineering (ICSE). 970–981.

[9] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with
PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds.

[10] Ursula Fuller, Colin G Johnson, Tuukka Ahoniemi, Diana Cukierman, Isidoro
Hernán-Losada, Jana Jackova, Essi Lahtinen, Tracy L Lewis, Donna McGee
Thompson, Charles Riedesel, et al. 2007. Developing a computer science-specific
learning taxonomy. ACM SIGCSE Bulletin 39, 4 (2007), 152–170.

[11] Lobna Ghadhab, Ilyes Jenhani, Mohamed Wiem Mkaouer, and Montassar Ben
Messaoud. 2021. Augmenting commit classification by using fine-grained source
code changes and a pre-trained deep neural language model. Information and
Software Technology 135 (2021), 106566.

[12] Frank Goldhammer, Johannes Naumann, Annette Stelter, Krisztina Tóth, Heiko
Rölke, and Eckhard Klieme. 2014. The time on task effect in reading and problem
solving is moderated by task difficulty and skill: Insights from a computer-based
large-scale assessment. Journal of Educational Psychology 106, 3 (2014), 608.

[13] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, LIU Shujie, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, et al. 2020. GraphCodeBERT:
Pre-training Code Representations with Data Flow. In International Conference
on Learning Representations.

[14] Philip J Guo. 2015. Codeopticon: Real-time, one-to-many human tutoring for
computer programming. In Proceedings of the 28th Annual ACM Symposium on
User Interface Software & Technology. 599–608.

[15] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. Codesearchnet challenge: Evaluating the state of semantic
code search. arXiv preprint arXiv:1909.09436 (2019).

[16] Matthew C Jadud. 2006. Methods and tools for exploring novice compilation
behaviour. In Proceedings of the second international workshop on Computing
education research. 73–84.

[17] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In

Proceedings of NAACL-HLT. 4171–4186.
[18] Alexander LeClair, Sakib Haque, Lingfei Wu, and Collin McMillan. 2020. Im-

proved code summarization via a graph neural network. In Proceedings of the
28th international conference on program comprehension. 184–195.

[19] Juho Leinonen, Francisco Enrique Vicente Castro, and Arto Hellas. 2021. Fine-
grained versus coarse-grained data for estimating time-on-task in learning pro-
gramming. In Proceedings of The 14th International Conference on Educational
Data Mining (EDM 2021). The International Educational Data Mining Society.

[20] Juho Leinonen, Francisco Enrique Vicente Castro, and Arto Hellas. 2022. Time-
on-task metrics for predicting performance. ACM Inroads 13, 2 (2022), 42–49.

[21] Soohyun Nam Liao, Daniel Zingaro, Kevin Thai, Christine Alvarado, William G
Griswold, and Leo Porter. 2019. A robust machine learning technique to predict
low-performing students. ACM transactions on computing education (TOCE) 19, 3
(2019), 1–19.

[22] JessicaMcBroom, Kalina Yacef, Irena Koprinska, and James RCurran. 2018. A data-
driven method for helping teachers improve feedback in computer programming
automated tutors. In International Conference on Artificial Intelligence in Education.
Springer, 324–337.

[23] Sarah Müller, Bianca Bergande, and Philipp Brune. 2018. Robot tutoring: On
the feasibility of using cognitive systems as tutors in introductory programming
education: A teaching experiment. In Proceedings of the 3rd European Conference
of Software Engineering Education. 45–49.

[24] John CNesbit, Olusola OAdesope, Qing Liu, andWentingMa. 2014. How effective
are intelligent tutoring systems in computer science education?. In 2014 IEEE
14th international conference on advanced learning technologies. IEEE, 99–103.

[25] Jungkook Park, Yeong Hoon Park, Suin Kim, and Alice Oh. 2017. Eliph: Effective
visualization of code history for peer assessment in programming education. In
Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work
and Social Computing. 458–467.

[26] Raj Shrestha, Juho Leinonen, Albina Zavgorodniaia, Arto Hellas, and John Ed-
wards. 2022. Pausing While Programming: Insights From Keystroke Analysis. In
2022 IEEE/ACM 44th International Conference on Software Engineering: Software
Engineering Education and Training (ICSE-SEET). IEEE, 187–198.

[27] Dowon Song, Woosuk Lee, and Hakjoo Oh. 2021. Context-aware and data-driven
feedback generation for programming assignments. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 328–340.

[28] Chengzheng Sun and Clarence Ellis. 1998. Operational transformation in real-
time group editors: issues, algorithms, and achievements. In Proceedings of the
1998 ACM conference on Computer supported cooperative work. 59–68.

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[30] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. 2008. Listwise
approach to learning to rank: theory and algorithm. In Proceedings of the 25th
international conference on Machine learning. 1192–1199.

[31] Shengbin Xu, Yuan Yao, Feng Xu, Tianxiao Gu, Hanghang Tong, and Jian Lu.
2019. Commit message generation for source code changes. In IJCAI.

	Abstract
	1 Introduction
	2 Related Work
	3 Code Editing History Dataset
	4 Diff-augmented Abstract Syntax Tree
	5 Code Editing History Based Ranking Model
	5.1 AST parsing
	5.2 DAST constructing
	5.3 Graph Neural Network
	5.4 Graph Pooling
	5.5 Transformer Encoder & Feedforward Neural Network
	5.6 Loss function

	6 Evaluation
	6.1 Experiment Setup
	6.2 RQ1: Overall Performance
	6.3 RQ2: Effectiveness of DAST
	6.4 RQ3: Cutoff Configuration
	6.5 RQ4: Transferability
	6.6 Limitations

	7 Conclusion
	8 Acknowledgments
	References

