
Eliph: Effective Visualization of Code History for
Peer Assessment in Programming Education

Jungkook Park, Yeong Hoon Park, Suin Kim, Alice Oh
School of Computing, KAIST, Republic of Korea

{pjknkda, yhpark92, suin.kim}@kaist.ac.kr, alice.oh@kaist.edu

ABSTRACT
In this paper, we investigate the effectiveness of visualiza-
tion of code history on peer assessment in computer science
education. Peer assessment is found to be an effective learn-
ing tool for programming education. While many systems
are proposed to support peer assessment in programming ed-
ucation, little effort has been devoted to finding ways to im-
prove the peer assessment by assisting the students to under-
stand the programs they are assessing. We introduce Eliph,
a web-based peer assessment system for programming edu-
cation with code history visualization. Eliph incorporates the
visualization of character-level code history, selection-based
history tracking and the integration of execution events to
assist students in understanding programs written by peers,
thereby leading to more effective peer assessment. We evalu-
ate Eliph with an experiment in an undergraduate CS course.
We show that visualization of code history has positive effects
on promoting higher quality of peer feedback by understand-
ing the intention and thought process.

Author Keywords
Peer assessment; Peer review; Data visualization; Time
series visualization; Code history;

ACM Classification Keywords
K.3.1. Computer Uses in Education: Collaborative learning

INTRODUCTION
In education research, peer assessment, where students eval-
uate other students’ assignments, is known to be an effec-
tive pedagogical tool. Studies found that peer assessment
helps students develop higher-order cognitive skills by letting
them engage in active analysis and judgement of other stu-
dents’ work [1]. In recent years, the use of peer assessment
has rapidly grown because of massive open online courses
(MOOCs) platforms that require a scalable solution for grad-
ing tens of thousands of assignments [6].

In computer science (CS) education, peer assessment in-
volves students reviewing other students’ code and giving

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CSCW 2017, February 25–March 1, 2017, Portland, OR, USA.
Copyright © 2017 ACM ISBN 978-1-4503-4189-9/16/10 ...$15.00.
http://dx.doi.org/10.1145/2998181.2998285

marks and feedback, and several studies in CS education
found positive effects of peer assessment. Studies found that
peer assessment helps students improve their programming
skills [21, 17] and delivers relevant and useful feedback to
students [17]. Other studies found that peer assessment helps
students to gain skills to evaluate technical work, understand
their own progress better, and feel a sense of being part of a
learning community [18, 4].

Peer assessment in CS education is most effective when it
is well supported by tools. Some of the previous studies use
commercial learning management systems or general peer re-
view tools, most of which are not designed for code review
[18]. Others use custom-built interfaces [17, 4]. However,
these studies describe tools that support the process of peer
assessment to run smoothly, rather than focusing on the effi-
cacy of the tools in improving the quality of the feedback in
peer assessment. For example, [4] introduces code annotation
tool that let students give more detailed feedback on specific
parts of the code during the code review.

Our approach to assist students in peer assessment is to give
them rich information about the whole problem solving pro-
cess of a given code, such that they can understand the inten-
tions of the author of the code. This is motivated by research
that even for skilled programmers, it is difficult to infer the in-
tentions of the author by merely reading the code [7], and one
of the common practices to overcome this is to use a system
for browsing the history of the code.

Thus, we explore the idea of showing the code history to
students participating in peer assessment. In addition to im-
proved results of peer assessment in programming education,
we conjecture that showing the code history has more ben-
efits. For instance, by observing the complete history of
the code writing process of others, students may gain more
knowledge about coding styles, steps of designing the struc-
ture of a program, and other programming skills that may be
unfamiliar to them. Also, these benefits may lead to improve-
ment in the reliability of peer assessment. Although there
are studies about finding a good aggregation algorithm for
more accurate grading [13, 14, 16], recent findings suggest
that these methods cannot make significant improvements be-
cause the errors originate from the lack of information or the
misunderstanding of the topic [16]. We hypothesize that the
added information of code history will positively affect the
accuracy of peer grading, resulting in improved reliability (or
reduced variance).

Session: Education & Games CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

458

In this paper, we investigate the effectiveness of the visual-
ization of code history for peer assessment in programming
education. We evaluate three hypotheses: 1) browsing the
code history results in improved quality of peer feedback; 2)
browsing the code history helps students get positive learn-
ing outcomes during peer assessment; 3) browsing the code
history improves the reliability of peer assessment.

While there are several tools for browsing code history, we
found that the existing systems are optimized for software
development and not well suited for peer assessment in pro-
gramming education. We present Eliph, a web-based peer
assessment system for programming education with code his-
tory visualization. Eliph incorporates three major features
to promote effective peer assessment in programming edu-
cation: (i) Character-level code history, (ii) Selection-based
history tracking, and (iii) the integration of Execution events.

In the rest of the paper, we describe Eliph, a peer assessment
system with a visualization tool for character-level code his-
tory and selection-based code history. We explain how we
integrate Eliph into an online CS education platform to con-
duct an experiment in peer assessment. We then present the
results of the experiment that show Eliph is in fact effective
in improving the quality of peer assessment.

RELATED WORK
In this section, we describe related work in two research top-
ics, peer assessment in programming education and code his-
tory visualization, and explain how our research contributes
to these topics.

Peer Assessment in Programming Education
Peer assessment is known as an effective pedagogical tool and
has been widely adopted in tertiary education across a variety
of disciplines [20, 2, 1]. There are also studies about its effec-
tiveness when it is introduced as a form of peer code review
in programming education [9]. Here we describe some of the
studies that propose systems for supporting peer code assess-
ment. [17] is one of the early studies, that describes a web-
based system for peer code review and assessment, showing
preliminary findings on the effectiveness of peer assessment
in learning programming languages. [4] introduces a Web-
based Programming Assisted System (WPAS) with annota-
tion tool where students are able to highlight and give com-
ments on parts of the code. Whereas these systems only show
the final version of the code, we incorporate the code history
to augment the peer assessment and show the effects through
a classroom experiment.

Visualization of Code History
There are several tools and papers about visualization of
code history. A survey paper [11] describes previously pre-
sented techniques to record and utilize developers’ operations
on the integrated development environment (IDE). SpyWare
[15] records code changes by hooking IDE’s change notifi-
cation. Syde [3] records changing history of abstract syn-
tax tree (AST). However, these two methods are based on
the syntax-element-level change history such as AST and

have a strong dependency on the specific programming lan-
guage. Also, extracting of syntax elements from the code re-
quires an AST parser, therefore cannot parse incomplete code
which has any syntactic error. To overcome the limitation of
syntax-element-level change history, OperationRecorder [12]
increases the granularity of data by extracting all editing op-
erations from the undo history of Eclipse IDE. Closely re-
lated to our research is AZURITE [23], an Eclipse IDE plugin
which collects character-level code change history and visu-
alizes it. While Azurite is developed and tested for increasing
productivity in software engineering, we specially developed
and integrated the code history visualization into the educa-
tion setting for improving peer assessment.

ELIPH
In this section, we describe the detailed elements of our code
peer assessment tool Eliph. First, the most important capa-
bility of Eliph is that it shows a character-level code his-
tory, rather than the differences between snapshots. Second,
Eliph lets the user select any arbitrary block of the code for
selection-based history tracking, as viewing fine-grained his-
tory may be cumbersome, in cases where the code is very
long. Third, another element of Eliph to assist students in
peer assessment is the visualization of execution events that
include system output and error messages. Lastly, we com-
bine all of these elements into a student interface that consists
of the code viewer, the history viewer, and the history slider.
Figure 1 shows a screenshot of this interface. Below we ex-
plain each of the elements in detail.

Character-Level Code History
For effective visualization of code history, Eliph keeps the
code change history at a fine-grain, as small as one character
insertion and deletion. This is in agreement with recent re-
search that it is important to look at code evolution at a much
finer grain than in traditional version control systems (VCS)
[10, 15]. Operational transformation (OT) is one effective
approach for working with real-time document changes at a
fine grain [19], and we use it to efficiently collect, store, and
re-create code revision history. OT works by identifying the
operations between two versions of a document, for example
inserting a word and deleting a character. To identify the po-
sition of the insertion and deletion, a skip operation is used.
Figure 2 shows an example of the application of these opera-
tional transformations.

Eliph is integrated with the code editor provided by the Elice
platform [5], a web-based computer science education plat-
form. When a student works on a programming exercise on
the Elice platform, it logs all the code changes at a charac-
ter level. Eliph is provided with the code changes data, then
it processes the data as OTs and uses them to re-create and
visualize the code history.

Selection-Based History Tracking
For some programming exercises, the history of the entire
code can be too vast and complex to navigate, and as such,
the visualization tool should provide appropriate filtering and
aggregation to organize and summarize the fine-grained his-
tory data. Our approach for filtering and aggregation of the

Session: Education & Games CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

459

Code Viewer History Viewer

History Slider

test

Figure 1. Overview of the Eliph interface. The code viewer (left) shows the last version of the code. The history slider (upper right) shows execution
events and the relative location of code change through the code history of selected code block. User can drag the history slider horizontally in order to
browse the code history. The history viewer (right) shows the code corresponding to the version indicated by the history slider.

Skip 6

Insert “Integer”

Delete “int”

A r r a y < i n t >

A r r a y < I n t e g e r >

A r r a y < >

A r r a y < i n t >

Replaying Backtracking

Delete “Integer”

Insert “int”

Rewind 6

Figure 2. Example usage of Eliph’s OT for the character-level code his-
tory. Green box indicates the position of the current cursor.

fine-grained code history is to provide a selection-based his-
tory tracking feature. That feature allows the user to select
any arbitrary block of the code, then Eliph extracts and vi-
sualizes the code history of the selected code block. Figure 3
shows one example of selection-based history tracking. In the
example, there are different parts in the assignment statement
that has been changed, but when the user selects the argument
part of the function call, Eliph tracks all relevant OTs and re-
constructs a local code history that only contains the OTs that
are relevant to the selected region.

Execution Events
In Elice, students repeat the cycle of code writing, submis-
sion, compilation, execution and grading to solve program-
ming exercises. We define execution events as the set of all
events generated from the cycle. The standard output gener-
ated from the code execution is one type of execution event,
and it can reveal the author’s intention because standard out-
put is often used for debugging programming codes. Like-
wise, error logs from compilation and execution process are
also regarded as execution events. Automated grading re-

Skip 4

Skip 2

Insert “s”

y = a b (2 x)

y = a b s (2 x)

y = a b s (2 x)

y = a b (2 x)

y = a b s (2)

y = a b s (2 * x)

Delete “x”

Insert “*x”

Code History

2 x

2 x

2

2 * x

Local Code
History

Skip 1

Delete “x”

Insert “*x”

Selection-based
History Tracking

Figure 3. Example usage of Eliph’s selection-based history tracking. The
green box indicates the position of the current cursor. The red region
indicates the area of the selected code block. The entire code history is
composed of five OTs, and after user selects the argument part of the
function call, the resulting local code history contains three OTs that are
relevant to the selected code block.

sult, another execution event, usually consists of scores and
messages from pre-defined test cases written by instructor.
These execution events are recorded through automated grad-
ing script in the Elice platform, which compiles, executes,
and grades student’s code submission.

Eliph visualizes the execution events to let the users refer
them as clues to find out what the code author was trying
to achieve at the moment. For example, by observing several
execution events that contain error messages within a small
time window, the user may infer that the code author was
struggling with debugging the code and fixing an error dur-
ing that time.

Session: Education & Games CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

460

AB

C

Figure 4. History slider in Eliph. The slider visualizes the timeline of
code history. A: The current position of the slider, draggable with point-
ing device. B: Execution events; red and black color represents execu-
tion events containing error message and non-error output, respectively.
C: Vertical position of the blue dots represent the location of the code
change within the file.

Student Interface
The Eliph interface integrates the visualization of character-
level code history, selection-based code history, and execu-
tion events described above. The interface consists of three
components (Figure 1): Code Viewer, History Slider, and
History Viewer. Students may look through the last version
of the code in the Code Viewer, and select a region of code
to browse the code history of the selected block. As the stu-
dent makes a selection, History Slider visualizes the timeline
of the code history and execution events relevant to the se-
lected code block. Then, the student can click and drag over
the History Slider to browse through different versions of the
selected code block in the History Viewer.

The design of the History Slider is shown in Figure 4 in de-
tail. The horizontal axis represents the revisions of the code,
and the thin vertical line (A) shows the current position of
the slider. As a student drags the slider, the line follows the
mouse pointer and the corresponding version of the code is
displayed in History Viewer. The vertical bars (B) represent
the execution events. The red colored bars represent error
messages, for example, compilation or runtime error. The
student can click one of these bars to see the details of the
execution event. The blue shapes (C) represent the relative
location of the code change within the file, visualizing where
the code changes have occurred over time.

EVALUATION
We conducted an experiment with the students in an under-
graduate computer science course (Data Structures) to inves-
tigate the benefits of showing code history in peer assessment
in programming education. We designed the experiment to
examine the following three hypotheses:

• H1: Visualization of code history promotes higher quality
of peer feedback.

• H2: Visualization of code history helps student to get pos-
itive learning outcomes.

• H3: Visualization of code history improves the reliability
of peer assessment.

In the Introduction to Data Structures course, the majority
of students (66%) were in their second year, and the second
largest group of students are in their first year (18%). The
course used Java as a primary programming language.

At the beginning of the course, we conducted a pre-course
survey to ask students how they feel about the course. We
used questions designed for the expectancy–value theory [22]

Students (58)

Feedback

Feedback Evaluation

Code Histories (9)

Exercise 1

Exercise 3

Author

Feedbacks 
(8~17)

Figure 5. Overview of the two-step experiment. We randomly selected
nine code submissions from three programming exercises. Step 1 (left):
Each of the 58 students was asked to evaluate two code submissions, once
using code history (solid line), and once without code history (dashed
line). Step 2 (right): Code authors were asked to evaluate the feedback
they received. 7 out of 9 authors participated in this evaluation, and the
number of the feedback each author received ranges from 8 to 17.

to measure (i) A1: how good students believe they already
are for the given subject (ability belief items); (ii) A2: how
well students expect to do in the course (expectancy items);
and (iii) A3: how important and interesting students think
the course is (usefulness, importance, and interest items).
Students responded with medium-low belief in their current
ability (A1: µ = 2.70, σ = 1.04, from 5-scale Likert ques-
tion), medium-high expectancy of their performance (A2:
µ = 3.81, σ = 0.90), and very high interest on the subject
(A3: µ = 4.49, σ = 0.69). In summary, the result indicates
that most students in this class think the course is very im-
portant and are willing to study most of the course material,
but they think their current abilities are below average. Most
notably, almost all students responded positively on questions
of A2 and A3, indicating that students were highly motivated
before class started.

We then designed a two-step experiment for students to val-
idate the benefits of history visualization during the peer as-
sessment. In particular, we sought to understand how Eliph
helps the process of (i) students assessing their peer’s work,
and (ii) students being evaluated by peers.

Step 1: Feedback Generation
In this step, students participated in peer assessment during
a regular class time. We first chose three programming ex-
ercises from homework problems, which all students were
required to submit prior to our peer assessment experiment.
For each of the three programming exercises, we randomly
selected three representative students, resulting in nine code
submissions. Then, we asked students to access the Eliph
web page using their own laptop to start peer assessment.
Each student was required to evaluate two anonymized code
submissions among the nine code submissions, once with the
code history and once without. Two of the code submissions
were arbitrarily assigned to each student in random order to
eliminate any potential ordering bias. Students were given
a grading rubric for evaluation. Using the criteria, students

Session: Education & Games CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

461

Avg. score % solved Avg. # of executions
E1 93.06 97% (91/93) 61.0
E2 72.02 85% (79/93) 30.0
E3 72.25 80% (74/93) 38.9

Table 1. Student statistics of the three programming exercises used in
the case study. The score of each exercise ranges from 0 to 100. Students
who got a score of 100 are marked as “solved”.

were asked to score the given code, write comments, and/or
directly add annotations to the code to “help the students be-
ing evaluated”.

Programming Exercises
For each homework assignment, students were given two
weeks to solve the exercises. Each programming exercise
contains the problem description, the skeleton code, and a
test/submission environment. Students were able to code, test
run, and submit inside the web IDE in the Elice platform.
There was no limit on the number of code submissions, thus
students were able to submit their code any time to immedi-
ately view the score of their submission. Students “pass” the
exercise when their submission passes all test cases and get
the score of “100”.

To thoroughly validate the effect of viewing code history,
we chose three exercises at different levels of difficulty and
length of code required to solve. Table 1 shows the student
statistics for the three exercises. The first exercise (E1) has
the lowest level of difficulty among three, and 97% (91 out
of 93) of students passed the exercise. Second (E2) and third
(E3) exercises have higher level of difficulty than E1, result-
ing in only 85% and 80% of students who passed the exer-
cise, respectively. Homework problem E3 required students
to write longer code compared to the others.

Code History Selection
For each programming exercise, we randomly selected three
code submissions. Since we allowed students to code outside
of the Elice platform, there were some students who wrote
their code and copy-pasted from outside of the platform. We
excluded these students because we need submissions with
complete code history from the initial skeleton code to the
final submission. We let ci, j denote code submission j for
programming exercise i. We chose nine code submissions
(c1,1 to c3,3), each from nine distinct students.

Peer Evaluation
We conducted peer evaluation during a regular class time.
Students brought their own laptops and agreed on the consent
form to participate, with a note that they can stop participating
at any time. Additionally, we instructed that the participation
of this test would not affect their grade in the class. 58 out of
93 students agreed to participate in the peer evaluation exper-
iment. At the beginning of the experiment, the participating
students were given a quick tutorial and a demonstration of
how to use the features of Eliph.

Figure 5 shows the overview of the experiment design. Be-
fore the experiment, we randomly, but evenly assigned each
code from c1,1 to c3,3 to each experiment participant. We ask

Number of Student Feedback
Code w/ History w/o History Total
c1,1 7 9 16
c1,2 7 7 14
c1,3 3 8 11
c2,1 9 8 17
c2,2 8 5 13
c2,3 3 5 8
c3,1 6 6 12
c3,2 7 4 11
c3,3 8 6 14

58 58 116
Table 2. The number of feedbacks we collected on each code submission.

participant to evaluate two code submissions with two differ-
ent settings, “with code history” and “without code history”.
In the “with code history” setting, participants may select a
code block from the Code Viewer, to browse the history of the
selected code block using the Local History Viewer. History
Slider and Local History Viewer are hidden from the students
for the “without code history” setting. We randomized the
order of the programming exercises and code history settings
(with/without code history) to avoid any potential ordering
bias.

It is important to set up the criteria for peer code evaluation
that is relevant and can be understood by students. We created
the criteria based on other peer assessment studies [4, 17] and
a grading rubric for an introductory computer science course
[8], as follows:

• Correctness – Program has no errors; program always
works correctly and meets the problem specification.

• Program Design – Program is well structured and easy to
follow.

• Efficiency – The programmer made good decisions about
the algorithms and language features for efficiency.

• Readability – Code is clean, understandable, and well-
organized.

• Assignment Specifications – Details of the assignment
specification are correctly followed.

To make sure students clearly understand all the criteria, we
provided the students with a supplementary guide that de-
scribes each criterion in detail.

Students were asked to evaluate the code in three ways: (i)
assign numerical score for each criterion (ii) write comments
for each evaluation criterion, and (iii) directly annotate the
final code snippet (shown in Code Viewer) by selecting the
code block and pressing “annotate” button. The average as-
sessment time for each code was 12.63 minutes.

Session: Education & Games CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

462

No. Question Pos.(%) / Neg.(%) Mean SD
Q1 To understand how the code works, browsing the code history 39.66 / 18.97 3.19 0.96

was more helpful than viewing the last version of the code.
Q2 To understand the code quickly, browsing the code history 36.21 / 24.14 3.14 1.07

was more helpful than viewing the last version of the code.
Q3 To understand author’s intention of the code, browsing the code history 68.97 / 13.79 3.86 1.06

was more helpful than viewing the last version of the code.
Q4 To assess the code, browsing the code history 39.66 / 22.41 3.21 0.94

was more helpful than viewing the last version of the code.
Q5 To provide feedback for the code, browsing the code history 39.66 / 18.97 3.24 0.97

was more helpful than viewing the last version of the code.
Q6 To learn how to write correct code, browsing the code history 41.38 / 22.41 3.22 0.89

was more helpful than viewing the last version of the code.
Q7 To learn how to write well-organized and readable code, browsing the code 36.21 / 22.41 3.19 0.96

history was more helpful than viewing the last version of the code.
Q8 To learn how to write efficient code, browsing the code history 29.31 / 24.14 3.09 0.92

was more helpful than viewing the last version of the code.
Table 3. The results of the post-evaluation survey. n = 58, and each question uses the 5-point likert scale. Positive percentages indicate the proportion
of “agree” and “strongly agree”, and the negative percentages indicate the proportion “disagree” and “strongly disagree”.

Post-Evaluation Survey
After completing the peer assessment, the evaluators were
asked how they felt about using code history during the as-
sessment process. To evaluate the pure benefit of using
code history, we asked students to compare between “with
code history” and “without code history” settings. Specifi-
cally, we asked students how much they were able to under-
stand the code and code author’s intention, and how much
they have learned during the assessment process in the “with
code history” setting, compared to “without code history” set-
ting. Questions were given with a 5-point Likert scale, from
“Strongly Disagree” to “Strongly Agree”. The questions and
the student’s responses are shown in Table 3. There were also
two free-form questions in the survey, which are related to
hypotheses H1 and H2 respectively.

Step 2: Feedback Evaluation
In this part, we recruited the authors of the nine code submis-
sions and asked them to evaluate the feedback they received
from the peer assessment. Seven authors consented to par-
ticipating in the feedback evaluation, and two authors of c2,3
and c3,1 did not participate. For the evaluation, we provided
a web-based feedback evaluation environment to the authors.
The feedback evaluation session took place for about an hour
in an offline classroom, with students participating on their
own laptop computers.

Eliph’s feedback evaluation page consists of a code viewer
and an assessment result viewer. When the author of the code
selects a feedback he/she received, the code viewer shows the
code annotations from the peers by coloring the annotated
area as bright-green and the assessment result viewer shows
points and comments he/she got on each criterion in the grad-
ing rubric. To see the messages in code annotations, the au-
thor can move his/her mouse pointer over the bright-green-

colored code line in the code viewer. All feedback com-
ments were anonymized, and authors could not see whether
the feedback had been generated with code history or without.

We asked the authors to fill out an evaluation form for each
feedback. According to Table 2, every participating author
was required to fill out 11 to 17 evaluation sheets. There were
five criteria in the evaluation form and the responses were
formed as 5-point Likert scale, from “Strongly Disagree” to
“Strongly Agree”. The criteria for evaluation and the authors’
responses are shown in Table 4.

ANALYSIS
In this section, we present our analysis of the data from the
two-step experiment with respect to three hypotheses. For H1
and H2, we employed a hybrid method of quantitative and
qualitative analysis on three different sources of data: student
feedback, post-evaluation student survey, and code authors’
feedback evaluation. For H3, we quantitatively investigated
the feedback evaluation data.

Data Preparation
We prepared the data by filtering out incomplete results and
aggregating the free-form comments in the post-evaluation
survey.

There are two cases of incomplete results we filtered out.
First, some participants dropped out before completing the
last step of the survey questionnaire. We regarded the feed-
back written by these users as “incomplete” and removed
them from the data. Second, some students just clicked the
submit button without writing any comments, and these were
also regarded as “incomplete” and removed from the data.

We aggregated the free-form comments in the student post-
evaluation survey after the feedback generation step. There

Session: Education & Games CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

463

were two free-form questions in the the survey regarding hy-
potheses H1 and H2 for which we obtained 57 and 53 re-
sponses, respectively. Two authors independently grouped
the comments according to the main idea of the comment,
then discussed to reach a consensus on the groupings.

We did not collect log data that are directly liked to the user
behavior with the tool. However, after analyzing the re-
sponses from the post-evaluation student survey, we found
that almost all the student (57 out of 58) who completed the
survey made a solid opinion on whether it helped, and the rea-
son why it helped (or not helped) in their assessment/learning.

H1: Eliph promotes higher quality of peer feedback

Quantitative Findings
To analyze the effect of showing the code history for promot-
ing better quality of peer feedback, we divided all feedback
into two groups – one is the experiment group with code his-
tory (Eliph) and the other is the control group without code
history. Table 4 shows the result the code authors’ evaluation
of the feedback they received, with the averages and stan-
dard deviations of the scores on each criterion. The results
show that the Eliph group (with code history) received sig-
nificantly higher scores, especially for the criteria of “style”
and “efficiency” of the code. Also, we find that the satisfac-
tion about the quality of feedback is significantly higher in
the Eliph group.

Furthermore, Table 3 shows that students felt more positive
about giving feedback with the code history compared to just
viewing the last version of the code. All questions including
“understand the code” (Q1, Q2), “understand the author’s in-
tention” (Q3), “assess the code” (Q4) and “provide feedback”
(Q5) have mean scores of greater than 3, and more positive
responses than negative responses.

Qualitative Findings
57 students replied to the free-form question “How did
browsing the code history help you assess the code? If it did
not, why?”. In the responses, students generally agreed that
browsing the code history helped them with assessing others
code. However, their responses varied in how the code history
helped with the assessment.

Intention: Nine students mentioned that they could infer the
code author’s intention from the code history.

“It allowed me to understand how the author came up
with the particular algorithm as well as why he imple-
mented some of the functions.” (Student 13)

“I could see in what order the author wrote the code.
Thus, I was able to know the author’s intention, and
it was helpful for assessing the efficiency of the code.”
(Student 20)

Thought Process: Eight students said they were able to follow
the author’s thought process by browsing the code history.

“Browsing the code history was helpful in understand-
ing the author’s flow of thought.” (Student 23)

“It felt like reading the steps of the thinking process.”
(Student 29)

Trial-and-Error: Eight students reported that the code history
showed the process of trial and error in the code history.

“The code history showed me the process of making mis-
takes and fixing them, so I was able to understand where
the author had been mistaken.” (Student 4)

“It helped me understand how the author wrote the code,
and how he/she had made progress with trial and error.”
(Student 53)

Code Readability: Also, six students reported that they were
able to understand the code more easily by browsing the code
history.

“In cases of code with poor readability, I had to browse
its code history to figure out the intention behind it.”
(Student 58)

“... What helped the most was that I didn’t have to un-
derstand the entire code at once; with the code history,
it was easier because I could follow the author’s stream
of thought.” (Student 57)

On the other hand, some students argued that browsing the
code history was not much helpful for assessing peer’s code.

Unnecessary Information: The most frequently mentioned
reason was that they felt the last version of the code was suf-
ficient for the assessment.

“Since it wasn’t a big project, I couldn’t get much extra
information out of the code history.” (Student 2)

“It did not help too much because the code was easy to
understand.” (Student 56)

Confusion: Four students reported that they were confused
by seeing the code history.

“No, I think code history is something that should be
hidden. Looking at that would make it more difficult
to understand because it confuses you with the program
structure of the final version.” (Student 17)

H2: Eliph helps student to get positive learning outcomes
Quantitative Findings
The result of Q6, Q7 and Q8 in Table 3 shows that student
assessors get positive learning outcome from using Eliph.
For the question to “learn how to write correct code” (Q6),
41.37% of students agreed with the effect and showed the
average score of 3.22 in the 5-point likert scale. For the ques-
tion “learn how to write well-organized and readable code”
(Q7), 36.21% of student agreed with the average score of
3.19. However, for the learning effect in “writing efficient
code”(Q8), the result was neutral, with 29.31% agreeing and
24.14% disagreeing.

Qualitative Findings
53 students replied to the free-form question, “How did
browsing the code history help you learn to write a good
code? If it did not, why?”. On this question, the responses

Session: Education & Games CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

464

No. Criterion Exp. Group Control Group
R1 The peer clearly understood my code. 3.97 (0.90) 3.79 (0.74)
R2 The feedback will help me to improve the style ∗3.72 (1.07) 3.24 (0.97)

or readability of my future code.
R3 The feedback will help me to improve the efficiency †3.72 (1.17) 3.21 (1.04)

or to use a better algorithm for my future code.
R4 I feel the feedback is fair and unbiased. 3.81 (1.13) 3.55 (1.05)
R5 I am satisfied with the overall quality of the feedback. ∗3.89 (0.94) 3.38 (0.95)

Table 4. The statistics of code authors’ responses about the feedback from peer assessment. ∗p < 0.05, † marginally significant. Seven code authors
participated, and the number of feedback in the experiment group is 36, and control group 42.

were evenly divided, in accordance with the quantitative re-
sult; 21 students agreed that they learned from browsing code
history, while an equal number of others disagreed, and the
others neither agreed or disagreed.

Comments from 21 students reported that students got posi-
tive learning outcomes from browsing the code history.

Writing Readable Code: Five students said that they learned
how to write a readable code from the peer’s code history.

“I learned some techniques such as naming variables,
assigning types for variables, splitting code into small
pieces, which could prevent potential problems as the
code gets bigger.” (Student 14)

“I learned to write a more readable code by watching
the author’s numerous efforts to make code more clean.”
(Student 34)

Different Code Styles: Some students reported that browsing
the code history helped them learn different ways of coding.

“Watching a different style of code writing, I feel like I
came to realize the correct way to write code.” (Student
38)

“I realized that people write code using steps in different
order. I learned more from code written by someone who
codes more like myself.” (Student 48)

Trial-and-Error: Students can see the trial and error through
the code history, which helped the students to learn how to
overcome errors in specific situations.

“I learned how people deal with different situations and
how people write simple and clean code. Most of all,
watching the trial and error gave me insights into partic-
ular cases where some approaches simply don’t work.”
(Student 33)

Thought Process: Some students also mentioned how reading
the author’s thought process through the code history helped
them to learn to code better.

“By knowing how the code was written and the thought
process behind it, I was able to learn how to expand my
thought.” (Student 7)

“It helped because I could figure out the thought pro-
cess of the author, through which he/she wrote the code.”
(Student 41)

On the other hand, about 40% students (21 of 53) described
why they felt browsing the code history was not helpful.

Not Much to Learn: The most common reason was that they
could not find many aspects to learn from the code history
because the final version of the code would be more correct
and optimized than any previous versions in many cases.

“Since students usually save the most efficient code in
the last version, it seems to be helpful to see only the last
version of the code.” (Student 49)

“If a well-written code is given, I could see the process
of writing good code by looking only at the final version
of the code” (Student 51)

“It is easy to see from the last version of the code the
parts which are not good.” (Student 56)

Poorly Written Code: Some students mentioned that they
could not learn from their peer’s code because the code was
not good, or the code history contained wrong or inefficient
code.

“Unless peer’s code is perfect, viewing the code history
does not seem to result in learning anything.” (Student
16)

“Code history is not helpful for learning something new
because it contains wrong or inefficient code.” (Student
44)

H3: Eliph improves the reliability of peer assessment
To test H3, we compared the peer evaluation scores between
the experiment group and the control group. We used the
variance of scores as the metric of reliability of peer assess-
ment. The average value and the standard deviation value of
the scores on each evaluation criterion are listed in Table 5.
We collected a total of 90 sets of peer evaluation, and the ex-
periment group and the control group received 43 and 47 sets
of feedback, respectively. To compare the score variance be-
tween the two groups, we conducted the Levene’s test. The
result shows there is no criterion with significant difference
in the variance of the score between the two groups, which

Session: Education & Games CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

465

Avg. score (SD) P-value
Exp. Group Control Group T-Test Levene-Test

PD 18.42 (2.14) 17.87 (2.59) 0.282 0.286
E 16.37 (2.97) 16.68 (3.72) 0.667 0.539
R 13.33 (2.08) 12.70 (2.78) 0.234 0.494

AS 13.81 (2.97) 14.36 (1.85) 0.309 0.298∑
61.93 (7.45) 61.62 (7.64) 0.846 0.710

Table 5. The results of peer evaluation. Each criterion means
PD=Program Design, E=Efficiency, R=Readability, AS=Assignment
Specifications. For all evaluation criteria, both the mean and the vari-
ance are not significantly different between the two groups. The number
of feedback in experiment group and control group is 43 and 47, respec-
tively.

means that the reliability of peer assessment in the two groups
does not differ significantly.

Additionally, we tested H3 with another reliability metric,
defined as the average score of R4 in feedback evaluation.
The results are shown in Table 4. Criterion R4 is about “fair-
ness” and “unbiasedness” of the peer evaluation feedback. As
shown in the result, the average score of R4 in the experiment
group is higher than the control group, but the difference is
not statistically significant.

DISCUSSION

Different experience-level of the students
The differences in experience levels may yield different im-
plications for individual students with respect to the effec-
tiveness of Eliph. In order to identify the differences from
our result, we calculated the correlations between the data of
the Ability Belief items in the pre-course survey (A1) and two
averaged items from the post-evaluation survey result (Q1-5
is the average of questions from Q1 to Q5; and Q6-8 is the av-
erage of questions from Q6 to Q8) for every individual, each
representing respectively the speculated measurements of stu-
dent’s experience level and his/her perceived effectiveness of
Eliph. From a Pearson correlation analysis, no measurable
correlation was found (r = −0.152 and r = 0.172 respec-
tively). From the result, we conclude that the differences of
experience-level between students have no measurable effect
on the effectiveness of Eliph.

Limitation
Analysis shows that code history helps students understand-
ing the code (Q1) and the intention of the author behind the
code (Q3). However, the feedback evaluation result does not
agree that the feedback from the Eliph group had better un-
derstood of their code (R1). To investigate this seemingly
conflicting results, we looked at the comments within feed-
back students left in the assessment (Step 1). What we have
found is that most of the feedback comments do not contain
any visible signs from which to infer how much one did un-
derstand the author’s intention. For instance, suggesting a
better algorithm took the highest proportion of the comments
for the Efficiency question:

“Your solution has O(n2) complexity as seen from the
lines 43 and 44 (nested loops), while a solution having
O(n ∗ log(n)) is available.”

Most of the comments from Readability criterion were related
to variable naming:

“Your variables all have proper naming clearly repre-
senting what they work for – really good.”

There were only few comments that refers the author’s inten-
tion or thought process:

“Thought process behind the program is clear.”

Thus, as of our evaluation setting, given the set of comments,
authors cannot distinguish if students understood the under-
lying thought process.

There are other factors related to our experiment setting that
may have degraded the significance of browsing the code his-
tory. One is the fact that most of the participated students
were very familiar with the programming exercises we used
in our experiment. As shown in Table 1, over 80 percent of
the students got 100 score by automated grading in three ex-
ercises. In addition, since the experiment was held in an in-
troductory CS course, the exercises required relatively simple
solutions, most submissions not exceeding 300 lines of code.
Thus, if a further experiment is done with more complex ex-
ercises, we may be able to find more rich evidence of the ef-
fectiveness of browsing code history, yielding more definitive
results.

CONCLUSION
In this paper, we introduced Eliph, a web-based peer assess-
ment system with code history visualization, specifically de-
signed to promote higher quality of feedback for the pro-
gramming education environment. From the experiment con-
ducted in an undergraduate CS course, we showed that look-
ing at the character-level history visualization has multiple
benefits in peer code assessment: (i) Looking at the code
history helped the evaluator understand the code structure as
well as the author’s intention more clearly; (ii) The overall
quality of feedback is higher when the code was evaluated
with the code history; (iii) Evaluators felt it is helpful to look
at the code history for their own learning.

During the experiment, we observed that code authors were
unable to estimate if peers correctly understood the code or
the underlying intention. This is because most students did
not explicitly state their level of understanding in the feed-
back. We plan to improve the design of the assessment pro-
cedure in Eliph to make the feedback more expressive. For
example, our current tool allows students to make comments
only on the final revision. This can be improved by letting
students to comment within the timeline of code history. In
this way, students can comment on an intermediate revision
with the context of the author’s problem solving process.

ACKNOWLEDGMENTS
This work was supported by the National Research Founda-
tion of Korea (NRF) grant (#01160227).

Session: Education & Games CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

466

REFERENCES
1. Nancy Falchikov. 2005. Improving Assessment through

Student Involvement: Practical Solutions for Aiding
Learning in Higher and Further Education.
RoutledgeFalmer, Chapter 5.

2. Stephen Fallows and Balasubramanyan Chandramohan.
2001. Multiple approaches to assessment: reflections on
use of tutor, peer and self-assessment. In Teaching in
Higher Education, Vol. 6. Taylor & Francis, 229–246.

3. Lile Hattori and Michele Lanza. 2010. Syde: a tool for
collaborative software development. In Proceedings of
the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 2. ACM, 235–238.

4. Wu-Yuin Hwang, Chin-Yu Wang, Gwo-Jen Hwang,
Yueh-Min Huang, and Susan Huang. 2008. A web-based
programming learning environment to support cognitive
development. In Interacting with Computers, Vol. 20.
524–534.

5. Suin Kim, Jae Won Kim, Jungkook Park, and Alice Oh.
2016. Elice: An online CS Education Platform to
Understand How Students Learn Programming. In
Proceedings of the Third (2016) ACM Conference on
Learning@ Scale. ACM, 225–228.

6. Chinmay Kulkarni, Koh Pang Wei, Huy Le, Daniel
Chia, Kathryn Papadopoulos, Justin Cheng, Daphne
Koller, and Scott R Klemmer. 2015. Peer and self
assessment in massive online classes. In Design
Thinking Research. Springer, 131–168.

7. Thomas D LaToza and Brad A Myers. 2010.
Hard-to-answer questions about code. In Evaluation and
Usability of Programming Languages and Tools. ACM,
8.

8. Mark Liffiton. 2014. CS 127 - Fall 2014: Grading
Rubric. https:
//sun.iwu.edu/˜mliffito/class/2014f/cs127/.
(2014).

9. Raymond Lister and John Leaney. 2003. First year
programming: let all the flowers bloom. In Proceedings
of the fifth Australasian conference on Computing
education-Volume 20. Australian Computer Society,
Inc., 221–230.

10. Stas Negara, Mohsen Vakilian, Nicholas Chen, Ralph E
Johnson, and Danny Dig. 2012. Is it dangerous to use
version control histories to study source code
evolution?. In Proceedings of the 26th European
conference on Object-Oriented Programming.
Springer-Verlag, 79–103.

11. Takayuki Omori, Shinpei Hayashi, and Katsuhisa
Maruyama. 2015. A Survey on Methods of Recording
Fine-grained Operations on Integrated Development
Environments and their Applications. Computer
Software 32, 1 (Feb. 2015), 60–80. Translated version
available at http://www.ritsumei.ac.jp/˜tomori/
publication/omori-survey16.pdf.

12. Takayuki Omori and Katsuhisa Maruyama. 2008. A
change-aware development environment by recording
editing operations of source code. In Proceedings of the
2008 international working conference on Mining
software repositories. ACM, 31–34.

13. Chris Piech, Jon Huang, Zhenghao Chen, Chuong Do,
Andrew Ng, and Daphne Koller. 2013. Tuned Models of
Peer Assessment in MOOCs. In Educational Data
Mining 2013.

14. Karthik Raman and Thorsten Joachims. 2014. Methods
for ordinal peer grading. In Proceedings of the 20th
ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 1037–1046.

15. Romain Robbes and Michele Lanza. 2007. A
change-based approach to software evolution. In
Electronic Notes in Theoretical Computer Science, Vol.
166. Elsevier, 93–109.

16. Mehdi SM Sajjadi, Morteza Alamgir, and Ulrike von
Luxburg. 2016. Peer Grading in a Course on Algorithms
and Data Structures: Machine Learning Algorithms do
not Improve over Simple Baselines. In Proceedings of
the Third (2016) ACM Conference on Learning@ Scale.
ACM, 369–378.

17. Jirarat Sitthiworachart and Mike Joy. 2003. Web-based
peer assessment in learning computer programming. In
Advanced Learning Technologies, 2003. Proceedings.
The 3rd IEEE International Conference on. IEEE,
180–184.

18. Harald Sondergaard. 2009. Learning from and with
peers: the different roles of student peer reviewing. In
ACM SIGCSE Bulletin, Vol. 41. ACM, 31–35.

19. Chengzheng Sun and Clarence Ellis. 1998. Operational
transformation in real-time group editors: issues,
algorithms, and achievements. In Proceedings of the
1998 ACM conference on Computer supported
cooperative work. ACM, 59–68.

20. Keith Topping. 1998. Peer assessment between students
in colleges and universities. In Review of educational
Research, Vol. 68. Sage Publications, 249–276.

21. Yanqing Wang, Hang Li, Yuqiang Feng, Yu Jiang, and
Ying Liu. 2012. Assessment of programming language
learning based on peer code review model:
Implementation and experience report. In Computers &
Education, Vol. 59. Elsevier, 412–422.

22. Allan Wigfield and Jacquelynne S Eccles. 2000.
Expectancy–value theory of achievement motivation. In
Contemporary educational psychology, Vol. 25.
Elsevier, 68–81.

23. YoungSeok Yoon, Brad A Myers, and Sebon Koo. 2013.
Visualization of fine-grained code change history. In
2013 IEEE Symposium on Visual Languages and Human
Centric Computing. IEEE, 119–126.

Session: Education & Games CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

467

https://sun.iwu.edu/~mliffito/class/2014f/cs127/
https://sun.iwu.edu/~mliffito/class/2014f/cs127/
http://www.ritsumei.ac.jp/~tomori/publication/omori-survey16.pdf
http://www.ritsumei.ac.jp/~tomori/publication/omori-survey16.pdf

	Introduction
	Related Work
	Peer Assessment in Programming Education
	Visualization of Code History

	Eliph
	Character-Level Code History
	Selection-Based History Tracking
	Execution Events
	Student Interface

	Evaluation
	Step 1: Feedback Generation
	Programming Exercises
	Code History Selection
	Peer Evaluation
	Post-Evaluation Survey

	Step 2: Feedback Evaluation

	Analysis
	Data Preparation
	H1: Eliph promotes higher quality of peer feedback
	Quantitative Findings
	Qualitative Findings

	H2: Eliph helps student to get positive learning outcomes
	Quantitative Findings
	Qualitative Findings

	H3: Eliph improves the reliability of peer assessment

	Discussion
	Different experience-level of the students
	Limitation

	Conclusion
	Acknowledgments
	REFERENCES

