
Eliph: Effective Visualization of Code
History for Peer Assessment in
Programming Education

Jungkook Park
School of Computing
KAIST, Republic of Korea
pjknkda@kaist.ac.kr

Suin Kim
School of Computing
KAIST, Republic of Korea
suin.kim@kaist.ac.kr

Yeong Hoon Park
School of Computing
KAIST, Republic of Korea
yhpark92@kaist.ac.kr

Alice Oh
School of Computing
KAIST, Republic of Korea
alice.oh@kaist.edu

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
CSCW 2017, February 25–March 1, 2017, Portland, OR, USA.
ACM ISBN 978-1-4503-4688-7/17/02.
http://dx.doi.org/10.1145/3022198.3023266

Abstract
Peer assessment is an effective pedagogical tool in which
students engage in the process of evaluating other stu-
dent’s work. In programming education, peer assessment
involves peer code review, where students mark and give
feedback other peer’s code. We introduce Eliph, a web-
based peer assessment tool for programming education
with code history visualization. Eliph incorporates the vi-
sualization of character-level code history, selection-based
history tracking and the integration of execution events. In
a controlled experiment performed in an undergraduate CS
course, we found that Eliph helps students understand code
structure and the author’s intention more clearly, and pro-
motes higher quality of peer feedback.

Author Keywords
Peer assessment; Peer review; Data visualization; Time
series visualization; Code history;

ACM Classification Keywords
H.5.m [Information interfaces and presentation (e.g., HCI)]:
Miscellaneous

Introduction
In computer science (CS) education, peer assessment in-
volves students reviewing other students’ code and giv-
ing marks and feedback, and several studies in CS edu-

Demonstration CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

33



Code Viewer History Viewer

History Slider

test

Figure 1: Overview of the Eliph interface. The code viewer (left) shows the last version of the code. The history slider (upper right) shows
execution events and the relative location of code change of the selected code block. User can drag the history slider horizontally to browse the
code history. The history viewer (right) shows the code corresponding to the version indicated by the history slider.

cation found positive effects of peer assessment. Studies
found that peer assessment helps students improve their
programming skills [8, 5] and delivers relevant and use-
ful feedback to students [5]. Other studies found that peer
assessment helps students to gain skills to evaluate tech-
nical work, understand their own progress better, and feel a
sense of being part of a learning community [6, 1].

Eliph, a web-based peer assessment tool for programming
education, visualizes the code history at a fine-grain level
to assist students in peer assessment by giving them rich
information about the whole problem solving process of a
given code, such that they can understand the intentions
of the author of the code. This is motivated by research
that even for skilled programmers, it is difficult to infer the
intentions of the author by merely reading the code [2], and

one of the common practices to overcome this is to use a
system for browsing the history of the code.

Eliph
In this section, we describe three elements of our code peer
assessment tool Eliph.

Character-Level Code History
Eliph provides visualization of code history at a fine-grain,
as small as one character insertion and deletion. This is
in agreement with recent research that it is import to look
at code evolution at much finer grain than traditional ver-
sion control systems (VCS) [3, 4]. Operation transformation
(OT) is one effective approach for working with real-time
document changes at a fine grain [7], and Eliph uses OT to
efficiently collect, store, and re-create code revision history.

Demonstration CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

34



AB

C

Figure 2: History slider in Eliph. The slider visualizes the timeline
of code history. A: The current position of the slider, draggable
with pointing device. B: Execution events; red and black color
represents execution events containing error message and
non-error output, respectively. C: Vertical position of the blue dots
represent the location of the code change within the file.

Selection-Based History Tracking
For some programming exercises, the history of the en-
tire code can be too vast and complex to navigate, and
as such, Eliph provides a way of filtering the code history
based on user’s selection. Users can select arbitrary block
of the code, then Eliph extracts the OTs associated to the
selected block and enables the users to see only relevant
code history to the selected code block.

Execution Events
We define execution events as the set of all events gen-
erated from the cycle of problem solving, which consists
of a series of actions such as code writing, submission,
compilation, execution and grading that students repeat to
solve programming exercise. Eliph visualizes the executions
events to let the users refer them as clues to find out what
the code author was trying to achieve at the moment.

Student Interface
The Eliph interface integrates the visualization of character-
level code history, selection-based code history, and exe-
cution events described above. The interface consists of

Code and Annotation Viewer Assessment Result Viewer

Figure 3: Page showing received feedback. The code and
annotation viewer (left) shows the code and the annotations the
evaluators created. The assessment result viewer (right) shows
the markings and comments he/she received.

three components (Figure 1): Code Viewer, History Slider,
and History Viewer. Students may look through the last ver-
sion of the code in the Code Viewer, and select a region of
code to browse the code history of the selected block. As
the student makes a selection, History Slider visualizes the
timeline of the code history and execution events relevant to
the selected code block.

Figure 2 shows the design of the History Slider in detail. As
student drags mouse over the slider, the corresponding ver-
sion of the code is displayed in History Viewer. Execution
events are visualized by the vertical bars, which students
can click to see more detailed information about the exe-
cution event. The blue shapes visualizes where the code
changes have occurred over time.

Demonstration CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

35



The received feedback is viewed in a page shown in Fig-
ure 3. Code and annotation viewer shows the code and the
code annotations created by the peer evaluators. The anno-
tations are colored as bright-green color over the annotated
area in the code. Moving mouse pointer over the annotated
area shows a pop-up overlay containing message of the
annotation. Assessment result viewer shows markings and
comments he/she received on each criterion.

Conclusion
We introduced Eliph, a peer assessment system with code
history visualization for programming education. From a
randomized controlled experiment we conducted in an un-
dergraduate CS course, we found that looking at the code
history helps evaluators understand author’s intention more
clearly and promotes higher quality of feedback. We hope
to give hands-on experience to CSCW attendees who are
interested not only in our research findings, but also the
visualization and overall user experience of Eliph.

Acknowledgements
This work was supported by the National Research Foun-
dation of Korea (NRF) grant (#01160227).

REFERENCES
1. Wu-Yuin Hwang, Chin-Yu Wang, Gwo-Jen Hwang,

Yueh-Min Huang, and Susan Huang. 2008. A
web-based programming learning environment to
support cognitive development. In Interacting with
Computers, Vol. 20. 524–534.

2. Thomas D LaToza and Brad A Myers. 2010.
Hard-to-answer questions about code. In Evaluation

and Usability of Programming Languages and Tools.
ACM, 8.

3. Stas Negara, Mohsen Vakilian, Nicholas Chen, Ralph E
Johnson, and Danny Dig. 2012. Is it dangerous to use
version control histories to study source code
evolution?. In Proceedings of the 26th European
conference on Object-Oriented Programming.
Springer-Verlag, 79–103.

4. Romain Robbes and Michele Lanza. 2007. A
change-based approach to software evolution. In
Electronic Notes in Theoretical Computer Science, Vol.
166. Elsevier, 93–109.

5. Jirarat Sitthiworachart and Mike Joy. 2003. Web-based
peer assessment in learning computer programming. In
Advanced Learning Technologies, 2003. Proceedings.
The 3rd IEEE International Conference on. IEEE,
180–184.

6. Harald Sondergaard. 2009. Learning from and with
peers: the different roles of student peer reviewing. In
ACM SIGCSE Bulletin, Vol. 41. ACM, 31–35.

7. Chengzheng Sun and Clarence Ellis. 1998. Operational
transformation in real-time group editors: issues,
algorithms, and achievements. In Proceedings of the
1998 ACM conference on Computer supported
cooperative work. ACM, 59–68.

8. Yanqing Wang, Hang Li, Yuqiang Feng, Yu Jiang, and
Ying Liu. 2012. Assessment of programming language
learning based on peer code review model:
Implementation and experience report. In Computers &
Education, Vol. 59. Elsevier, 412–422.

Demonstration CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

36


	Introduction
	Eliph
	Character-Level Code History
	Selection-Based History Tracking
	Execution Events

	Student Interface
	Conclusion
	Acknowledgements
	REFERENCES 



