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ABSTRACT
In programming education, instructors often supplement lec-
tures with active learning experiences by offering program-
ming lab sessions where learners themselves practice writ-
ing code. However, widely accessed instructional program-
ming screencasts are not equipped with assessment format
that encourages such hands-on programming activities. We
introduce Elicast, a screencast tool for recording and viewing
programming lectures with embedded programming exercises,
to provide hands-on programming experiences in the screen-
cast. In Elicast, instructors embed multiple programming ex-
ercises while creating a screencast, and learners engage in
the exercises by writing code within the screencast, receiving
auto-graded results immediately. We conducted an exploratory
study of Elicast with five experienced instructors and 63 un-
dergraduate students. We found that instructors structured the
lectures into small learning units using embedded exercises
as checkpoints. Also, learners more actively engaged in the
screencast lectures, checked their understanding of the con-
tent through the embedded exercises, and more frequently
modified and executed the code during the lectures.

Author Keywords
screencast; instructional screencast; programming exercises;
embedded quizzes

INTRODUCTION
Instructional programming screencast, where an instructor
records a video of their screen while writing code to teach
programming, has become a popular medium for massive
open online courses (MOOCs) [14], software development
tutorials on the web [10, 21], and flipped classroom lectures
[4, 12]. For learners, watching the process of designing and
implementing the code can lead to better understanding of
the logical workflow of writing a program [21]. However,
these screencasts generally do not provide rich support for
*Both authors contributed equally to this work.
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learners’ interaction with the content, and they are thus limited
in promoting learners’ active engagement.

Active learning, where learners engage and participate in vari-
ous activities in addition to listening to the lecturer, is partic-
ularly effective for programming education, as learners can
apply abstract programming knowledge and obtain practical
skills by writing their own code. In offline programming ed-
ucation settings, a common way to facilitate active learning
is to offer programming lab sessions [6] where students work
on a programming task while instruction and feedback are
given by the instructor. However, it is difficult to emulate such
educational environments in large-scale online lectures with-
out a proper system to support them. Embedded (or in-video)
quizzes, common in MOOC lectures [8, 9], can be regarded as
an example of such support that promotes active engagement
of the learners by providing frequent formative assessments
[7]. However, existing online education platforms provide
only a limited set of modalities for embedded quizzes, such
as multiple-choice and short-answer questions [5, 22], which
are not suitable for giving students hands-on programming
practice.

We present Elicast, a screencast tool for recording and viewing
programming lectures with embedded programming exercises.
To provide continuous formative assessments with hands-on
programming practices, we explore the idea of embedding pro-
gramming exercises within instructional programming screen-
casts. Our approach goes one step further from placing simple
quizzes within lectures, as we integrate programming exer-
cises with various contents being presented in the screencast,
namely the code written by the instructor. This approach dif-
fers from common programming assignments or notebook-
based programming handouts (e.g. Jupyter Notebook) [25]
that are given separately from the learning content. By inte-
grating the assessment and the learning content together, the
embedded programming exercises can be presented “just-in-
time” and reduce the learners’ cognitive burden of linking
information from different sources together [24].

In this paper, we describe Elicast system focusing on how it
embeds programming exercises in screencasts and how the
exercises are automatically assessed, and explain how instruc-
tors can embed hands-on exercises in programming screen-
casts using the Elicast screencast recorder. Then, we report
our exploratory study with five experienced instructors and
63 undergraduate students. Findings from the study include:
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(i) instructors tend to structure the lectures into small learn-
ing units using programming exercises as checkpoints, and
(ii) embedded programming exercises help learners to check
their understanding and maintain their attention throughout
the screencast.

RELATED WORK
Our research is related to three major research areas: screen-
casts for instructional contents, active learning in program-
ming, and embedded quizzes in video lectures.

Instructional Programming Screencast
Screencasts, which are used in a variety of educational con-
texts, are becoming increasingly popular as a medium for
programming education. In a programming screencast, an
instructor typically demonstrates the process of writing code
with explanatory narration. Screencasts are one of the common
production styles for video lectures in MOOCs [14]. Moreover,
there is a large and growing number of instructional screen-
casts in online video sharing platforms (e.g., YouTube) that
demonstrate software development activities [10, 21]. Several
studies [4, 12] also show the use of screencasts as flipped
classroom lectures in computer programming courses.

There are several instructional screencast platforms supporting
text-based screencasts that inspired Elicast. Khan Academy
uses text-based screencast system in computer science courses
and lets students modify and run the code during a lecture.
Asciinema1 is a screencast platform for recording and shar-
ing terminal sessions, and Scrimba2 is an interactive coding
screencast platform mainly focused on the tutorials for web
development technologies. Elicast begins with the screencast
but goes beyond the prior work to seamlessly integrate hands-
on programming exercises into the screencast, encouraging
instructors to add checkpoints and learners to engage in active
learning.

Active Learning in Programming
Literature on programming teaching distinguishes the ability
to write program from being able to comprehend one. Study
suggests there is little correspondence between the two abil-
ities [33], and the ability to read and comprehend code does
not directly translate to the ability to produce program code
[11]. Thus, many educators give students problem-solving
tasks with hands-on programming opportunities such as writ-
ing a program or debugging a given code [30]. Furthermore, a
survey of university teachers and students revealed that they
both agree that practical experience was most useful in under-
standing the programming concepts [20]. Elicast enables this
active learning to occur in tight integration with the screencast
lecture, which would enable delivering the hands-on program-
ming experience to a wide audience of online learners.

Embedded Quizzes in Video Lectures
Embedded quizzes have been actively used in MOOCs as well
as other online video lectures [5]. There are also a number of
instances of using embedded quizzes [9, 4] in lecture videos
1https://asciinema.org/
2https://scrimba.com/

for flipped classrooms [3]. The study shows the embedded
quizzes significantly increase the learning gain of the lecture
content [15]. Embedded quizzes are mostly used as a formative
assessment in videos, and they can strengthen the understand-
ing [22, 29] by providing frequent and continuous feedback
[7].

In popular online learning platforms, embedded quizzes are
mostly comprised of multiple-choice or short-answer ques-
tions. However, some platforms do allow embedding quizzes
using other types of modalities. Several MOOC platforms sup-
port taking free-form text answers, and studies devised a way
to provide automatic grading of the answers for open-ended
questions [2] and essays [23]. Some studies applied different
types of modalities used in embedded quizzes. L.IVE [24]
embeds in-place assessment quiz in interactive videos, and
RIMES [17] explores the idea of embedding more expressive
quizzes that learners can record their answers with a web-
cam, microphone and drawings. As far as we know, Elicast is
the first system to integrate hands-on programming exercises
directly into the screencasts.

ELICAST
In this section, we describe Elicast, a web-based tool for
recording and viewing programming screencasts with em-
bedded programming exercises. First, we introduce how an
instructor can use Elicast to embed programming exercises
into the screencast (See Figure 1). Second, we explain how
multiple embedded exercises can be automatically assessed
using assert statements. Third, we show a usage scenario of
Elicast when an instructor records a screencast and embeds
multiple exercises in the screencast. Lastly, we show how the
embedded exercises are displayed to learners and how learners
can interact with the embedded exercises.

Embedding Programming Exercises
To provide hands-on programming experience for learners,
Elicast allows instructors to embed programming exercises in
the screencast. Then the embedded exercises are displayed to
learners in a similar manner to conventional in-video quizzes;
when an exercise appears during the screencast, the screencast
is paused until the learner completes or explicitly skips the ex-
ercise. When a programming exercise appears, the instructor’s
code splits into two regions: a non-editable “skeleton region”,
and an editable “quiz region” where the learners insert their
solution for the exercise (See Figure 2).

To integrate embedded programming exercises with instruc-
tor’s code shown in the screencast, Elicast records screencasts
in a text-based format, by capturing the instructor’s screen
as the stream of text change events [28] instead of a video
consisting of image frames.

Assertion-based Automated Assessment
Elicast gives immediate assessment results upon learners’ sub-
mission to the exercises. Namely, Elicast evaluates the func-
tionality of the submitted code by testing whether the student’s
code performs the same functionality as the instructor’s model
solution that appears later in the screencast. While there are
numerous automated assessment systems for evaluating pro-
gram functionality, they are mostly based on the assumption
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Figure 1. The interface of screencast recorder for instructors. Instructor can record screencast, embed programming exercises, and add assertions for
automated assessing. The text highlighted in purple shows the embedded programming exercise, and the text highlighted in red shows the assertions.

Figure 2. The interface of the screencast viewer for learners when an
exercise appears. The code editor splits into two regions; a non-editable
“skeleton region” and an editable “quiz region”. The skeleton region is
colored in grey, whereas the quiz region is colored in white with the place-
holder text “Write your answer here”. Learners can write arbitrary code
in the quiz region. Learners can also run the code, submit the code for
checking the answer, or skip the exercise.

that the submitted assignments are executable programs [1].
However, embedded exercises in Elicast can be created in
any part of the code at any specific moment in the screen-
cast where overall program structure may not be complete,
thus a syntactically incomplete, unexecutable code may as
well be a valid solution for some exercises. For example, as
illustrated in Figure 3, suppose a screencast contains the code
‘c=[exercise 1] d=[exercise 2]’ at a specific moment and asks
learners to answer the region ‘[exercise 1]’. In this case, what-
ever the learner submits as answer, the code cannot be executed
because the code is incomplete due to the unanswered region
‘d=[exercise 2]’. Thus, to make immediate grading possible
even for incomplete codes, Elicast introduces a novel inline

a, b = 3, 4
c = b + a
assert(c == 7)
d = a – b
assert(d == ‐1)

a, b = 3, 4
c = a + b
assert(c == 7)
d = a – b
assert(d == ‐1)

a, b = 3, 4
c = b + a
d =

Instructor’s final code

Learner’s submission

Assessed code

ex 1

ex 2

ex 1

Replacing
✔

✔ex 2

Figure 3. The process of assertion-based automated assessment. Elicast
constructs a temporary “Assessed code” behind the scene, by replacing
the part of the instructor’s final code that corresponds to the “quiz re-
gion” of the exercise with learner’s response to the exercise. Then the
“Assessed code” is checked if it passes all the assert statements.

assertion-based automated assessing method which mixes two
different codes – learner’s submission code and instructor’s
code in the end of the screencast.

When students submit an answer to an exercise, Elicast se-
lectively replaces a specific part of the instructor’s final code
of the screencast with the code written by the learner. For
example, assume that the learner writes some code snippet to
the first exercise. Figure 3 shows the process of assessing this
example situation. Elicast system first calculates the region in
the final code which corresponds to the “quiz region” of the
first exercise. Then, Elicast constructs a temporary “Assessed
code” by replacing the calculated region with learner’s code
snippet using the non-linear editing techniques for text-based
screencasts [26]. Lastly, Elicast executes the “Assessed code”
and checks the assertions. If there is an error, it can be seen
as an error in the learner’s code because other parts of the
code are written by instructors to be correct. This process can



Figure 4. The interface of the screencast viewer for learners. Learners
can watch the screencast, run and modify the code in the editor, and
engage in embedded programming exercises.

be applied to the exercises in the screencast one by one, thus
Elicast can assess all exercises in the screencast. With this
procedure, instructors can automatically assess all embedded
exercises at once by writing assertions only at the end of the
screencast.

Screencast Recording for Instructors
Lecture Content. An instructor starts recording by clicking
the “Record” button. Then, she writes the code in the editor,
and at the same time, narrates the explanation through the
microphone. During the recording, the instructor can execute
the code by clicking the “Run” button, and the running output
of the executed code is shown in the “Output window”, which
is also recorded as part of the screencast. The instructor can
pause and un-pause recording by pressing the “Pause” but-
ton. During the pause, the instructor can “Save”, “Load”, and
“Cut” with the recorded screencast. “Cut” discards the latter
part of the recording, allowing the instructor to re-record the
screencast from the paused point.

Programming Exercise. The instructor embeds programming
exercises by clicking the “Make exercise” button. Same as
recording the lecture, the instructor can write code with voice
narration; the difference from recording the lecture is that
the area where the code is being written becomes an input
field for the learners to fill in, and the instructor’s code in
that area will be hidden from the learners until they solve the
exercise or skip it. After the instructor finishes writing code for
the programming exercise, the instructor can click the “End
making exercise” button to go back to recording the lecture.

Assertion. After recording the whole lecture, the instructor can
click “Pause” and start making assertions by clicking “Record
Assert”. The instructor can write assertions around the input
fields of the programming exercises. The instructor can also
click “Run” while writing the assertions to check whether the
assertions work correctly.

Screencast Viewer for Learners
A learner can start the screencast by clicking the “Start” button.
Figure 4 shows the interface for the learners while playing
the screencast. The learner can pause the screencast anytime
by clicking “Pause”, and when paused, they can change and
run the code in the editor. However, the changes made by the
learner is temporary, and it gets discarded when the screencast
resumes.

When a learner encounters the programming exercise, as pre-
defined in the lecture, Elicast pauses the screencast and dis-
plays an input field to ask the learner to solve the program-
ming exercise (See Figure 2). The learner would listen to the
explanation about the exercise with the instructor’s voice nar-
ration, and solve the exercise by writing their own code. While
solving the exercise, they can click “Run” to test the code,
then click “Check Answer” to check if their answer is correct.
Elicast automatically runs the learner’s code with the asser-
tions written by the instructor and gives immediate feedback
{passed, failed} to the learner. The learner can then resume the
screencast if the code has been assessed as correct, or they can
retry or skip the exercise.

EVALUATION
We conducted exploratory studies with experienced screen-
cast instructors and undergraduate students to investigate the
efficacy of embedded programming exercises. We designed
two studies: Study 1 investigates how instructors make use of
embedded exercises in creating screencast lectures, and Study
2 examines how learners engage with the exercise-embedded
screencasts.

STUDY 1. INSTRUCTORS RECORD EXERCISE EMBED-
DED SCREENCAST
The first study focuses on the instructors’ experience of mak-
ing instructional programming screencasts with embedded
programming exercises.

Participants
We recruited five instructors who have experience in teaching
computer programming using screencasts on the web. Among
them, four instructors had experience in teaching programming
via live video lectures, and three of them also had experience
in offline classroom lectures. All instructors stated that their
teaching ability is sufficiently good to record instructional
programming screencasts.

Procedure
We first provided a brief introduction of the experiment to the
instructors with a tutorial video that shows how to use Elicast,
with a focus on how to embed programming exercises and
how the resulting screencast will be shown to students. After
instructors watched the tutorial video, we provided informa-
tion about the learners including their demographics and the
level of prior knowledge in computer programming.

After the introduction, we asked the instructors to record at
least two screencasts in different topics, each with more than
three programming exercises. The topics were not restricted



Figure 5. Examples of the embedded programming exercises created by
the instructors. (a) Implement a method of Queue class (b) Write a reg-
ular expression that satisfies the test case below (c) Write a function de-
scribed by the instructor.

but the instructors were asked to record a lecture at a level ap-
propriate for second-year undergraduate students. They were
given up to seven days to complete the screencasts.

Finally, we conducted a semi-structured interview with the
instructors. For the analysis of the interview data, other two
authors independently performed thematic analysis with the
interview notes and transcripts.

Results
Five instructors recorded ten screencasts with topics on Python
programming language and introductory data structures; the
average duration of the recorded screencasts is 15.1 minutes
(s = 3.07). The instructors created 36 embedded programming
exercises in the screencasts (examples are in Figure 5), with an
average of 3.6 exercises (s = 1.07) per screencast. The median
time instructors spent in creating a 15-minute-long screencast
was 24.24 minutes (x̄ = 52.10, s = 79.50).

During the interview, we asked the instructors a range of ques-
tions regarding their experience of creating screencast with
Elicast compared to conventional screencast lectures. In the
following sections, we describe the analysis results from the
interviews.

Modularized, Checkpoint-style Learning Units
We first found that instructors designed the flow of the lectures
differently from their past online screencasts; they tended to
organize each screencast lecture into smaller learning units.
Most instructors responded that with Elicast they felt they can
insert checkpoints at the end of each sub-unit of the lecture.

“With Elicast, what I felt different from the conventional
lecture style was that I could define finer-grained goals of

the lecture. For instance, I made programming exercises
to teach push and pop instead of writing and testing the
code for the queue as a whole.” (Instructor 1)

“A step-by-step lecture. Each step is comprised of an
explanation of the concept and a programming exercise,
and the exercises serve as checkpoints.” (Instructor 5)

Instructor 2 pointed out that before recording the lecture he
made a whole schedule to make his lecture modular, to gradu-
ally increase the difficulty of each module from easy to diffi-
cult.

“When I was asked to record a 15 minute lecture with
four exercises, I felt I needed to schedule well to evenly
distribute time and the level of difficulty among the exer-
cises. This was the difference from my past online lecture
– at that time I didn’t feel the need to do it this way. I
designed each of the exercises to be easy, but the last one
should incorporate all the concepts in the lecture video.”
(Instructor 2)

Assertions Are Easy-to-Create Yet Limited
All instructors felt assertion-based automated assessment is
easy to create. Instructors 1, 2, 3, and 4 stated that they had no
technical difficulty when writing assertions to test student’s
code as it felt similar to writing test cases in software devel-
opment. Data from log analysis also corresponded; the time
instructors spent on writing assertions has a median of 1.82
minutes (x̄ = 1.81, s = 0.99).

However, some instructors worried that the assertion-based as-
sessment would not be applicable to certain types of exercises.
Instructor 1 and 4 commented there would be certain cases
where it was difficult to design the code with assert statements
for their embedded exercises:

“If I wanted to test a condition in an if statement, then
it would be... quite difficult. There are certain places I
can set as an input field, for instance, I won’t set a class
member declaration as an input field and let students to
fill out – it could affect the whole code.” (Instructor 1)

“Some things cannot be tested with assertions. For ex-
ample, class structure and constructors, especially when
assessing based on how well the student formed the code
structure. This is essential when we teach novice stu-
dents, but it was hard to capture that using assertions.”
(Instructor 4)

Additionally, Instructor 3 commented that he had difficulty
predicting how students would perceive the grading process:

“Programming assertions was not a problem, but it was
difficult to simulate how students would feel about the
programming exercise. For instance, it took a while for
me to design assertion logic and decide when and where
to put them.” (Instructor 3)

Instructors’ Expectation of Pedagogical Benefits
While some instructors felt recording Elicast lecture took more
time and effort, all expected that Elicast would be pedagog-
ically beneficial to students. Instructor 1, who is well expe-
rienced delivering online live streaming lectures, stated that



Elicast would give students a feeling of participation, similar
to pair programming. Instructor 2 felt interactive, embedded
programming exercise would re-engage students losing focus.

“I like the fact that students would feel they are writing
code with me, rather than repeating after me – they usu-
ally just copy the code in the video. I like how students
would feel they’re learning together.” (Instructor 1)

Instructor 4 emphasized that runnable programming exercises
would bridge the gap in student’s perception between watching
and actually participating.

“Based on my previous experiences, I feel there is a big
difference between how students think they understand,
just by watching the lecture, and what they actually know,
which is revealed only when they type and run the pro-
gram. What I like about Elicast is that this tool allows the
instructor to quickly create small-sized exercises, which
is intuitive to both instructor and students, and students
can check if they actually understood the lecture – by
doing.” (Instructor 4)

One negative comment on embedding programming exercise
came from Instructor 2, who worried that the exercise would
interrupt the student’s cognitive flow as it stops the lecture in
several places.

STUDY 2. LEARNERS WATCH SCREENCAST AND EN-
GAGE IN EXERCISES
We studied how learners engage in the programming exercises
embedded within the screencasts with a user study consisting
of pre- and post-tests, pre- and post-surveys, and observa-
tions of their behavior while they watched the screencasts and
solved the embedded exercises.

Participants
We recruited 63 undergraduate students who have taken an
introductory computer science course using the Python pro-
gramming language. The majority of students (N = 46/63)
had taken only one CS course before the experiment. In 5-
point Likert scale questionnaires from the pre-study survey,
students responded they have moderate expectancy in program-
ming ability compared to other students in their academic year
(x̄ = 3.03, s = 0.95, Md = 3), yet they are interested in learn-
ing programming (x̄ = 4.14, s = 0.84, Md = 4).

Procedure
The experiment for the students consisted of three steps: taking
the pre-study survey, watching two lectures and taking pre-test
and post-test for each lecture, and taking the post-study survey.
Each lecture was 15 to 20 minutes long and the overall process
took about one hour.

The experiment started with a pre-study survey asking how
many courses the students had taken and how proficient they
were in programming. The questions in the pre-study survey
were designed based on Expectancy-Value Theory of Achieve-
ment Motivation [31].

To analyze the effectiveness of the embedded exercises, stu-
dents were asked to watch two lectures–one with embedded

Title Duration # of exercises
L1 Max Machine 15:51 5
L2 Queue 14:21 4
L3 Python RE 20:38 4

Table 1. The summary of the three lectures selected for Study 2. The
lectures are expected to be new to students who had not taken the data
structure course.

exercises and the other without, in a random order. For the
screencasts without embedded exercises, instructor’s explana-
tion about the exercise was played without a pause. We chose
three screencast lectures about (L1) Introduction to Python
class, (L2) Data structure: Queue, and (L3) Regular expres-
sions. We expected these lectures would be new to students
who had not yet taken the data structures course. The summary
of the three lectures are in Table 1.

We asked the students to answer five multiple-choice pre-test
questions before each lecture. Every question in the pre-test
had an option “I don’t know" to see whether the concepts
covered in the lecture were new to the students.

Students also answered post-test questions after each lecture.
To avoid testing effect and pre-test effect, we designed the
pre-post study followed the procedure used in [16, 32]; the
post-test consisted of the same questions as the pre-test in a
shuffled order; the learning gain was measured by the score
difference between the pre-test and the post-test.

After the students finished watching the two lectures, they
were asked to answer the post-study survey. The post-study
survey contained five 5-point Likert scale questions which
were designed to identify students’ self-reported effectiveness
and satisfaction on the embedded exercises. Lastly, we asked a
free-form question in the post-study survey, asking “How did
the embedded exercises help you learn the content? If it did
not, why?”.

Results
For the analysis of the result, we employed a hybrid method
of quantitative and qualitative analysis on different sources of
data: pre-test and post-test scores from each lecture, usage logs
from the Elicast platform, and responses from the post-study
survey.

For qualitative analysis of students’ responses to the free-form
questions, two authors independently coded and grouped the
comments into recurring topics, then discussed to reach a
consensus on the groupings.

Learners Engage in Lectures More Actively
We observed that students actively engaged in lectures when
the lectures have embedded programming exercises. To mea-
sure the engagement during the lecture, we collected three
navigation events (click play button, click pause button, and
seek through timeline bar) which were always available during
the lecture and used them as the proxy of video engagement
[19]. As a result, we collected a total of 2,612 video navigation
events from 63 students. From unequal variances t-test on the
number of navigation events per student, we identified that the
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Figure 6. The ratio of exercise solving patterns for each lecture measured
in Study 2. CORRECT-1: correctly answered in one try, CORRECT-N:
correctly answered in multiple tries, GIVE-UP: tried but never got the
answer, and SKIP: never tried.

navigation is significantly more frequent (unequal variance
t-test, t = 2.99, p < 0.005) in the lectures with the embed-
ded programming exercises (x̄ = 25.16, s = 18.14, n = 63)
than the lectures without the exercises (x̄ = 16.30, s = 14.72,
n = 63).

The majority of students actively participated in solving the
exercises when they encountered them. Each of the students
received an average of 4.33 exercises during the lecture, and,
as summarized in Figure 6, 90.44% (N = 247/272) of the
exercises were tried at least once, and 73.16% (N = 199/272)
of the exercises were correctly answered either in a single try
or after multiple tries.

The answers to the questions from the post-study survey
showed consistent results of active engagement of students. In
the post-study survey, the majority of the students responded
they agreed that the embedded exercises positively affected
their learning experience. When asked with 5-point Likert
scale questions (1: strongly disagree, 5: strongly agree), stu-
dents responded that the lecture with embedded exercises was
more interesting (x̄ = 4.17, s = 0.93, Md = 4), easier to fo-
cus (x̄ = 4.31, s = 0.88, Md = 5), and easier to understand
(x̄ = 3.92, s = 1.02, Md = 4).

We also qualitatively analyzed the responses to the free-form
question in the post-study survey. In the responses, 13 students
mentioned that they were able to stay focused and be engaged
throughout the lecture because of the embedded exercises.

“Online lectures are usually disengaging, but I stayed
focused this time in order to solve the problems.” (Student
17)

“... and because we’re forced to pay attention to the lec-
ture I think it’ll help us learn better.” (Student 22)

“It made me take time to write code and apply things that
I might have overlooked otherwise.” (Student 56)

On the other hand, a few students felt disengaged from the
lecture because there were too many things to do.

Avg. score (SD) Avg. learning gain (SD)
Pre-test Post-test w/ Exercise w/o Exercise

L1
4.17 5.00 0.95 0.70

(1.32) (1.02) (1.28) (1.52)

L2
3.16 4.95 1.71 1.88

(1.91) (0.80) (1.96) (1.80)

L3
0.98 4.78 ∗4.59 3.14

(1.36) (1.04) (0.94) (1.74)
Table 2. The summary of pre- and post-tests scores and learning gain
of the three lectures in Study 2. The unequal variance t-test is used to
measure the significance of the average learning gain between the group
with embedded exercises and the group without embedded exercises.
∗p < 0.001

“It was nice to be able to use what I learned immediately,
but I lost interest if there was too much to learn.” (Student
12)

“There were too many small problems.” (Student 38)

“It was nice to be able to think and review the lecture to
solve the problem. However, the feeling of interruption
interfered with the concentration.” (Student 61)

Preliminary Evidence on Higher Learning Gains
From the pre-test and post-test experiment designed to mea-
sure the learning gain from each lecture, we observed that the
embedded exercises promote learning gains most when the
lecture introduces concepts that are unfamiliar to the learn-
ers. The topic of L3 was observed to be new to most students
(pre-test score x̄ = 0.98, s = 1.36, out of 6), and the learning
gain of the group who had seen the lecture with the embedded
exercises (x̄ = 4.59, s = 0.94, n = 22) was significantly higher
(unequal variance t-test, t = 3.42, p < 0.001) than the group
without the exercises (x̄ = 3.15, s = 1.74, n = 27). However,
there was no evidence for significant difference of learning
gains between the two groups for L1 and L2. We conjecture
this is because there was not enough room to measure the
learning gain. For both lectures, the majority of the students
already scored more than half in the pre-test (Table 2), and
answered the embedded exercises correctly in the first try (Fig-
ure 6), suggesting the topics were already familiar to most of
the participating students.

Furthermore, responses to the free-form question in the post-
study survey hint that embedded exercises have positive effects
on learning gains. We grouped the responses into the three
following categories:

Checking for Understanding: Eight students reported that they
could check whether they were following the instructor’s ex-
planation up to the point of the embedded exercises.

“I was able to clearly confirm that I understood the lec-
ture.” (Student 6)

“... It gave me a chance to think twice about the contents
that I was going to go through in confusion.” (Student
58)



Memorizing: Six students mentioned that they could better
memorize what they had learned in the lecture.

“... It helped me to reinforce my knowledge because
solving the exercises while watching the lecture led me
to retrieve what I had learned before. ...” (Student 1)

“Solving the exercises during the lecture, I was able to
take control of my own learning, and I will probably
remember longer through repetition of the concept.” (Stu-
dent 11)

Applying What I just Learned: 11 students said that they could
apply what they learned during or right after the lecture.

“... The exercises made me think about which parts of the
lecture were really important. Also, they made me think
about applying what I learned.” (Student 10)

“I realized that understanding something conceptually is
quite different from applying it in practice.” (Student 43)

On the other hand, a few students reported that there was noth-
ing to learn because the lecture was too easy or too difficult.

“I rarely understood the content of the second lecture, so
I had to skip all the problems. To be honest, I did not get
much help.” (Student 48)

“I think I would have been able to watch to the lecture
more interestingly if I had it a bit more difficult topic.”
(Student 53)

Elicast Promotes Learning by Doing
We found that Elicast promotes “Learning by Doing”; students
tended to run the code more frequently during lecture when
there were embedded exercises. Although students in the group
without the exercises were still able to modify and run the code
after pausing the text-based screencasts, the number of code
snippets executed per student during a lecture was observed
to be significantly greater (unequal variance t-test, t = 4.67,
p < 0.001) in the group who had seen the lecture with the
embedded exercises (x̄ = 5.14, s = 7.27, n = 63) than the
group without the exercises (x̄ = 0.71, s = 1.69, n = 63).

Also, not only the increment of students’ execution activities,
we observed positive learning effect from “Learning by Do-
ing”. From correlation analysis, we found a weak positive
correlation between the number of code executions and the
learning gain (Pearson’s r = 0.26), in both the group without
the embedded exercises (r = 0.30) and the group with the
embedded exercises (r = 0.27).

Moreover, students responded in the post-study survey that
they executed their code to understand the code written by
the instructor, and tried different ways of problem-solving to
further understand the lecture.

Trying Different Solutions: Several students reported that they
got an opportunity to think for themselves and attempted im-
plementations different from the solution suggested by the
instructor.

“... It made me think a little harder about implementing
actually and thinking of all the possibilities for myself,

even if the instructor solves it a certain way. ...” (Student
3)

“... The embedded exercises from Elicast let me think
about writing code for new examples.” (Student 32)

DISCUSSION

Different Styles of Exercise-Embedded Screencasts
By analyzing the exercise-embedded screencasts created by
the instructors from Study 1, we identified two types of in-
struction styles closely related to the different usage patterns
of embedded programming exercises.

Writing Structured Code: In half of the screencasts (N = 5/10),
the instructor demonstrates a process of writing structured
code (i.e. python class, tic-tac-toe game) and let the learners
write some of its components as exercises. For example, in a
screencast titled “Queue” by Instructor 1, he scaffolds a small
amount of code for a class for the queue data structure, and
lets the learners implement some of the class methods such as
pop() as embedded exercises.

Giving Independent Examples: The other half of the screen-
casts (N = 5/10) cover the topics that do not involve designing
a structured code. These include Python list comprehension
and regular expressions. In this type of screencasts, the instruc-
tor shows multiple examples while teaching the concept, and
lets the learners try out writing new variations of the given
examples as embedded exercises.

We also expect that more diverse instruction styles using em-
bedded exercise will emerge as instructors get more familiar
with Elicast. As of the design of our study, instructors were
not given enough opportunities to get familiar with Elicast.
In addition, since the screencasts in the study are targeted for
second-year undergraduate students, the topics were limited to
introductory programming topics (i.e. List comprehension) or
basic data structures (i.e. queue). Thus, to further explore more
instructional styles possible with exercise-embedded screen-
casts, further work is needed to test Elicast deployed in a more
natural setting where instructors can use Elicast to produce a
series of instructional screencasts, and cover topics with more
diverse range of difficulty levels.

Learners Need More Feedback from Exercises
Elicast gives an automated assessment result immediately
upon learners’ code submission. However, it does not provide
any information on why the submission is graded as incorrect.
Some students brought up this issue in the post-study survey,
expressing the need for more detailed feedback on why their
solution was wrong. In particular, they said they needed some
hints for further direction when their code was syntactically
correct but semantically incorrect.

“... but I thought I needed some hints that would guide me
in solving problems and lead me to the intended direction
when my code didn’t have any grammatical error but
didn’t pass the test.” (Student 31)

Overall, students expressed frustration about the lack of as-
sistance when they were not able to make progress on the



exercises. This can cause the learner to be de-motivated, poten-
tially resulting in disengagement from learning [18]. Therefore,
providing feedback with automated grading result is one of
the major directions for further improvement of Elicast. Con-
ventional test-cased feedback generation technique would be
easily applied to assertion-based automated assessing, by label-
ing each assert statement with a feedback message. Applying
more advanced approaches, such as using error models [27]
or clustering code variations [13] of the learners’ solutions,
would be worth exploring in future work.

Exercise Engagement Data as Lecture Feedback
During the interview, we asked instructors for the possibility
of using Elicast as a potential communication medium be-
tween students and instructors. Specifically, we asked what
they would like to see if they can access students’ problem-
solving data collected from Elicast. All instructors responded
that they would check the number of passes, fails, and skips
for each exercise.

There were two potential use cases suggested by the instruc-
tors, of how to utilize student data. First, Instructors 1, 2, and
5 commented that they would regard pass, fail, and skip rate as
a quantitative feedback from students. Higher fail rate would
imply that the programming exercise was too difficult, and
higher skip rate would mean the exercise was not interesting
or too difficult.

“I would consider myself a good instructor if most student
pass all programming exercises.” (Instructor 1)

“The most skipped exercise would be my primary interest.
Then I would improve my lecture based on that data.”
(Instructor 2)

Second, Instructor 3 and 4 wanted to see how students per-
form well by observing their problem-solving attempts. Both
instructors said Elicast could provide finer-grained data to
assess students’ level of understanding, which cannot be ob-
tained in conventional lecture settings.

“It would be interesting if I could observe each student’s
status in finer granularity. Lecturers could know who did
not understand which part of the lecture. Lecture can be
split into smaller parts. This could not be done in my past
lecture experiences.” (Instructor 4)

Limitations and Future Work
From pre-test scores of lectures in Study 2, we found that
two of the screencast lectures used in Study 2 (L1 and L2)
covered the topics that were already familiar to the majority
of participants, which made it difficult to determine the effect
size of learning gain with the pre-test post-test experiment.
For through validation of the benefits of embedded exercises
on learning gains, further evaluation will be needed on the
learning contents with more varying difficulty levels. Future
work will deploy Elicast in real-world environments, and in-
vestigate the efficacy of exercise embedded screencast in the
long term. We open-sourced Elicast under MIT license to be
freely available for public use. The source code is available at
https://github.com/elicast-research/elicast.

CONCLUSION
We present Elicast, a screencast tool for recording and viewing
programming lectures with embedded programming exercises.
Elicast employs just-in-time programming exercise within
the screencast, which is designed to easily be embedded and
make learners to engage in the lecture by writing their own
code into the screencast. The exploratory study of Elicast with
five experienced instructors and 63 undergraduate students
showed that Elicast positively influenced the behaviors of
both instructors and learners. In making screencast, instructors
tended to organize each lecture into smaller learning units
using exercises as checkpoints, and they expected that Elicast
would bring benefits to learners by giving students a feeling of
participation. We found that learners actively engaged in the
lectures when they encountered the embedded programming
exercises, and they tended to run the code more frequently
when there are embedded exercises.
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