
Detecting Contract Cheaters in Online Programming
Classes with Keystroke Dynamics

Jeongmin Byun
School of Computing, KAIST

Daejeon, South Korea
jmbyun@kaist.ac.kr

Jungkook Park
School of Computing, KAIST

Daejeon, South Korea
pjknkda@kaist.ac.kr

Alice Oh
School of Computing, KAIST

Daejeon, South Korea
alice.oh@kaist.edu

ABSTRACT
In online programming classes, it is tricky to uphold academic
honesty in the assessment process. A common approach,
plagiarism detection, is not accurate for novice programmers
and ineffective for detecting contract cheaters. We present a
new approach, cheating detection with keystroke dynamics in
programming classes, and evaluated the approach.

Author Keywords
online education; academic honesty; keystroke dynamics;
contract cheating

INTRODUCTION
Assessment is a critical element in education, and a typical
approach in online programming classes is to give take-home
assignments and exams for student assessments. However,
although these are effective learning tools, it is tricky to up-
hold academic honesty. Previous research shows that 7% of
undergraduate students admitted to turning in papers written
by someone else, and 3% admitted to obtaining essays from
essay mills [6] for class assignments. We believe that online
programming assignments are an easier target for cheaters.
Since there are no in-class activities and proctored exams,
students can easily hire other people to work on their tasks.
Previous work shows that students are more likely to cheat
when the student-instructor relationship is weaker; this is a
known problem in online classes.

One of the conventional approaches to prevent this problem
is to use the plagiarism detection software, and plagiarism
detection for program code started in the 1970s before the
plagiarism detection for natural language started. Academic
misconduct in programming classes can be detected with code
clone detection algorithms like Deckard [4] based on measur-
ing code similarity, and code stylometry algorithms [1] based
on n-gram frequencies. However, these algorithms may not be
appropriate for novice programmers; program codes submitted
in introductory programming classes are often too short and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
L@S ’20, August 12–14, 2020, Virtual Event, USA.
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7951-9/20/08 ...$15.00.
http://dx.doi.org/10.1145/3386527.3406726

Figure 1. A "merge" function from two different students on an exer-
cise task. Two students separately authored program code (A) and (B),
but they are hard to distinguish from each other based on the code con-
tent. Since the ASTs (abstract syntax trees) from both of the codes are
the same, code clone detection algorithms detect the codes as clones, and
codes are too short and similar to each other to use code stylometry al-
gorithms.

simple to distinguish. Figure 1 shows the example of a similar
code submitted as answers to a programming exercise.

However, when a document is written using a keyboard,
there is another way to identify the author of the document.
Keystroke dynamics based algorithms allow author identifi-
cation based on authors’ keyboard typing patterns. These
algorithms are known to be very accurate and have no error
in the right conditions if authors are typing fixed text [5], and
have about 95% of precision and 99.9% recall on detecting
fraud for long free-form natural language text [3]. In a free-
form text written in natural language, the algorithm utilizes the
typing pattern for frequent n-grams (e.g., a frequent sequence
of letters in English stop words) to detect an anomaly. There
are no stop words in program codes, but there are reserved
keywords for programming languages that frequently appear
in the text. Therefore we expected that keystroke dynamics
based algorithms would show high accuracy with program
codes, too.

Based on this idea, we built a prototype system that analyzes
keyboard-related events observed in the web-based program-
ming exercises in online programming classes. The system
observes all pressing and releasing actions from the author’s
activity at the millisecond level, informing the instructor and
the staff if anomalies are found.

For evaluation, we ran an experiment with 27 students in an
Introduction to Programming course in KAIST. The result
shows that our system achieves an accuracy of 94.8% on
classifying the author of program code, and 85.9% precision
and 84.4% recall for detecting contract cheaters.

Work-in-Progress/Demonstration Session L@S ’20, August 12–14, 2020, Virtual Event, USA

273

The main contributions from this work are:

• A system that records and analyzes keystroke dynamics to
classify the code authors and detect contract cheaters.

• An evaluation of the system with the data collected from
the real university class.

RELATED WORK

Plagiarism Detection
Plagiarism detection software has been used to handle the
academic misconducts in various classes, and programming
classes are no exception. Previous research shows that code
stylometry algorithms and code clone detection algorithms can
be used to find cases of academic misconduct in programming
assignments.

Code stylometry algorithms identify unique programming
styles from the program codes to identify the authors. There
are various ways to implement codes that do the same task;
we may expect to find unique programming styles from the
program codes authored by one author. Previous work on this
topic shows that authors of program codes can be identified
by observing byte-level n-grams or word-level n-grams [1].
Also, there are attempts to identify the program code author
based on the code structure represented in the form of AST
(abstract syntax tree), and this method can be applied to the
executable binaries after a decompilation process. Meanwhile,
there are also studies on code clone detection algorithms [4],
where similar techniques are used to measure the similarity
between two program codes instead of identifying the authors
of the codes.

However, code stylometry and clone detection algorithms are
often not applicable to detect plagiarism in the introductory
programming classes. Programming exercises designed to
teach basic programming concepts like conditionals, loops,
functions, or classes and instances usually ask students to
write short and simple code due to their lack of programming
skills, and this makes the students write similar-looking codes
that are not distinguishable from each other especially when
they are converted to ASTs. Figure 1 shows a pair of codes in
our dataset where two students separately wrote and ASTs for
them are identical to each other.

Compared to these algorithms, our approach is relatively accu-
rate to use for plagiarism detection in introductory program-
ming classes. Students write short program codes only, but
they still include multiple reserved keywords and built-in func-
tion names. Therefore observing keystroke dynamics from the
students’ programming sessions allow us to detect the anomaly
when someone tries to hire a third person and attempt contract
cheating.

Keystroke Dynamics
Keystroke dynamics have often been used to improve the secu-
rity in the ID-password user authentication process. Since the
pattern of latency between keyboard events is unique to the
individuals, previous studies have proposed methods and sys-
tems that identify or verify the person who typed the keyboard
to enter a password. In the early stage, researchers verified the
people based on the keyboard events observed while everyone

Figure 2. An overview of the user interface for web-based programming
exercises. This web page from our system supports students with a pro-
gramming environment, including lecture videos, task descriptions, a
code editor, and a code runner. Students can learn, read the task de-
scription, write and run the code, and grade the code in a single web
page, while server observes the keyboard events triggered by the stu-
dents in the page.

is typing the same static text (e.g., password) [5]; and studies
that try to identify the person typing free-form texts appeared
later [3]. Researchers tend to collect datasets for their own
research since it is hard to find the datasets for keystroke dy-
namics analysis. Hence, it is hard to compare the performance
of the existing algorithms.

There are also keystroke dynamics research that uses keystroke
dynamics analysis in other tasks. For example, some tried to
measure the stress level of the users based on the keystroke
dynamics, while some tried to find if a person is lying or not
based on the keystroke dynamics [7].

Although several studies already developed high-performance
anomaly detection methods based on keystroke dynamics, they
are all either designed to work on a static text or free-form text
contents written in natural languages. In this work, we propose
to use a keystroke dynamics based method to detect contract
cheating cases in program codes, develop a web-based system
that observes anomaly in programming code writing sessions,
and evaluate the system with 27 students in a university course,
Introduction to Programming.

DESIGN

Web Application for Programming Exercises
We built a prototype system that hosts web-based program-
ming hands-on exercises that allows the server to observe the
keyboard events triggered by students while they write and run
program codes on a web browser. Figure 2 shows an overview
of the web page for programming exercises. Since the sys-
tem provides the lecture video, exercise task description, code
editor, and code runner with grader in the single web page,
students can conveniently work on the programming exercises
within our system’s web page.

Also, programming libraries or input file examples required
for solving the programming exercises are only available in
our system, so that students naturally have to work on the
exercises directly on our web page. This is important for
preventing the contract cheating because when students can
work on the exercise out of our system, they can hire a third
person to work on their exercise and copy the finished code
by typing the code. When students work on the programming

Work-in-Progress/Demonstration Session L@S ’20, August 12–14, 2020, Virtual Event, USA

274

Figure 3. Keyboard key-press and key-release events while typing "if:"
represented as downward and upward arrows on the time axis. Com-
mon types of time intervals used as elements of a feature vector that
represents a keyboard typing session are indicated on the figure.

exercises on our web page, our system observes all keyboard
press events and release events with millisecond precision to
analyze and detect the contract cheaters.

Analysis on Keyboard Events
Keystroke dynamics contain various timing information com-
posed of all keyboard press and release events triggered during
the document editing session. Previous research shows that
time intervals between specific timestamps from two consecu-
tive keyboard inputs are useful when building a feature vector
for classification or anomaly detection from keyboard events.
For example, there are a few types of time interval values that
commonly appear in multiple research work like press-flight
time, release-flight time, dwell time, and break time. Accord-
ing to these types, typing "if:" on the keyboard could be
interpreted as a series of time intervals like in Figure 3 [8].

EVALUATION
To evaluate our system, we observed and analyzed the
keystroke dynamics data from the students who take Intro-
duction to Programming class in KAIST. The class covers the
basic programming concepts and skills using Python 3, and we
used the data from the students worked on their programming
exercises in two offline lab sessions where they practice how to
use mathematical operators and file input/output (27 students,
5 exercise tasks in total 6 hours). We verified all students’
identity to make sure no one is trying contract cheating in our
experiment. Based on the keystroke dynamics observed from
the students, we extracted feature vectors from each of the typ-
ing sessions for solving a programming exercise and applied
anomaly detection algorithms to find the session authored by
someone else than the expected student.

Feature Extraction
We extracted feature vectors to use in anomaly detection from
the keyboard dynamics data observed from the students solv-
ing the programming exercises. There are a few effective
ways to extract the keyboard dynamics based feature vectors
from free-form text keyboard typing sessions suggested by
previous research, but they used the data collected from the
natural language typing sessions. Therefore, we tried to find a
compact keyboard dynamics based feature vector that includes
the necessary information from programming language typing
sessions.

We are extracting keystroke dynamics based features from
a free-form text typing, so we decided to use various time

Classification Method Acc.

Random Baseline 0.037
Clone Detection (Deckard) [4] 0.052
Stylometry (Lexical & Layout) [2] 0.193
Keystroke (All Digraphs) [8] 0.830
Keystroke (Python Keywords) [8] 0.533
Keystroke (Common N-graphs) 0.948

Table 1. Accuracy scores from classification compared with baseline
methods.

interval values from most frequently appearing digraphs and
trigraphs, and dwell time for frequently appearing characters
(monographs). We ran two preliminary experiments to decide
the set of time interval values and n-graphs to use in building
the feature vectors and evaluated the final feature extraction
method by comparing the performance against the methods
suggested in previous studies. Many previous studies based on
keyboard dynamics in free-form text typing are focused on the
author classification task, so we have used classification accu-
racy from author classification for this procedure to evaluate
our method against them.

Time Interval Values
To find the best time interval values to use in our feature
vectors, we ran 5-fold cross-validation of author classification
on our data for all possible combinations of time interval
values (dwell, press-flight, release-flight, and break), with all
possible combinations of top k monographs, l digraphs, and m
trigraphs that are most likely to be found in the source code
where 0 ≤ k, l,m ≤ 10. Results show that including dwell time
in the feature vector is required to get the best accuracy in over
90% of the n-graph sets. Other than that, an optimal set of the
time interval values depends on the set of n-graphs used.

N-graphs
To find the optimal set of n-graphs for building feature vectors,
we ran 5-fold cross-validation of author classification using
k monograph, digraph, and trigraph that are most likely to
be found in our data to build feature vectors (1 ≤ k < 100).
The result shows that the classification accuracy is higher
when more n-graphs are used in the range of 1 ≤ k ≤ 30, but
the accuracy converges around k = 30. We had the highest
accuracy at k = 35 in 1 ≤ k < 100, when dwell time and
release-flight time are used to build the feature vector.

We tried to find and omit insignificant features in this feature
vector, so we applied the feature elimination algorithm on the
elements. However, omitting any of the elements resulted
in a lower classification accuracy score; thus, we omitted no
element from the feature vector.

Meanwhile, the accuracy scores after omitting features ex-
tracted with each of the n-graph give us a brief insight on
which n-graphs are most effective in feature vector building.
The top five n-graphs that cause the biggest loss of the accuracy
score when omitted from the feature vector are: monograph
"T", trigraph "Spacebar = Spacebar", monograph "B", digraph
"T E", and trigraph "O R Spacebar", respectively.

Work-in-Progress/Demonstration Session L@S ’20, August 12–14, 2020, Virtual Event, USA

275

Comparison with Baseline Methods
We compared and assessed our feature extraction method with
baseline methods from previous studies. We used the random
forest classifier with our feature vectors since it resulted in
the highest mean accuracy score among six commonly used
classifiers in scikit-learn library. We applied various methods
to the author classification task on our data (with 5-fold cross-
validation).

Table 1 shows the accuracy scores achieved with baseline
methods and our method. Baseline methods show signifi-
cantly lower accuracy scores compared to the scores from
their original experiments; this may be caused by relatively
short and simple program codes in our data, or the small size
of our data. As a result, our method outperformed all baseline
classification methods in the experiment with an accuracy of
94.8%.

Contract Cheater Detection
We used the same data again for the experiment to evaluate
our method on contract cheater detection. However, we re-
placed student A’s typing session for one of the programming
exercises E with another student B’s session to simulate the
data from the case where student A is hiring a third person B to
solve the exercise E. All other records from the student B are
removed from the data since we are supposed not to have any
other data from B. We applied our method to detect student B’s
session from this simulated data, and we repeated this process
for all possible combinations of student A, B, and exercise E
for 27 students and 5 exercises.

Although this task is anomaly detection, we used a random
forest classifier with a modified threshold on prediction. We
labeled all student A’s sessions as class 1 and all other sessions
as class 0, and trained the classifier. We considered the session
in test data as an anomaly when the probability of this session
to be class 1 is under 90%. We collected all results from the
contract cheater detection tasks for every combinations of A,
B, and E, and the average precision and recall value are 85.9%
and 84.4% respectively. This makes a false acceptance rate
(FAR) of 15.6% and a false rejection rate (FRR) of 14.1%.

CONCLUSION
In this work, we proposed a new approach to detect con-
tract cheaters with keystroke dynamics in online program-
ming classes and developed a prototype system to evaluate our
method. Unlike other approaches to detect academic dishon-
esty in online classes, our method can be used in introductory
programming classes with novice students. We evaluated our
system with a real university class and students, and showed
that the system detects contract cheating cases with higher
accuracy than the previous studies; the false acceptance rate
(FAR) is 15.6% and the false rejection rate (FRR) is 14.1%.
We expect our system to notify staff and instructors about
suspicious cases for further investigation, and reduce contract
cheating in online programming classes.

On the other hand, we found some limitations to our work,
but we may be able to improve our system by resolving them
as future work. First, our system has a relatively high false
acceptance rate and false rejection rate, which makes it not

usable as a sole verification method for filtering out contract
cheaters. Since we used one of the traditional algorithms to
handle anomaly detection cases and there are modern algo-
rithms that are shown to work better in many cases, we may
be able to improve our system’s performance by utilizing one
of those algorithms. Also, our system cannot detect the case
where students are copying others’ code but typing the code
in the editor by themselves. Traditional plagiarism detection
algorithms are designed for this case, but they are not very
effective to use for novice programmers. We expect that we
can detect this kind of case with keystroke dynamics analysis,
too, since the lying person can be detected with the keystroke
dynamics [7]. We have plans to use keystroke dynamics analy-
sis to distinguish the typing session where the person is merely
copying the content from other regular sessions.

ACKNOWLEDGEMENTS
This research was supported by Next-Generation Information
Computing Development Program through the National Re-
search Foundation of Korea (NRF) funded by the Ministry of
Science, ICT (2017M3C4A7065962).

REFERENCES
[1] Steven Burrows and Seyed MM Tahaghoghi. 2007.

Source code authorship attribution using n-grams. In
Proceedings of the Twelth Australasian Document
Computing Symposium, Melbourne, Australia, RMIT
University. Citeseer, 32–39.

[2] Aylin Caliskan-Islam, Richard Harang, Andrew Liu,
Arvind Narayanan, Clare Voss, Fabian Yamaguchi, and
Rachel Greenstadt. 2015. De-anonymizing programmers
via code stylometry. In 24th USENIX Security
Symposium (USENIX Security), Washington, DC.

[3] Daniele Gunetti and Claudia Picardi. 2005. Keystroke
analysis of free text. ACM Transactions on Information
and System Security (TISSEC) 8, 3 (2005), 312–347.

[4] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and
Stephane Glondu. 2007. Deckard: Scalable and accurate
tree-based detection of code clones. In Proceedings of
the 29th international conference on Software
Engineering. IEEE Computer Society, 96–105.

[5] Marcus Karnan, Muthuramalingam Akila, and Nishara
Krishnaraj. 2011. Biometric personal authentication
using keystroke dynamics: A review. Applied soft
computing 11, 2 (2011), 1565–1573.

[6] Donald L McCabe. 2005. Cheating among college and
university students: A North American perspective.
International Journal for Educational Integrity 1, 1
(2005).

[7] Merylin Monaro, Chiara Galante, Riccardo Spolaor,
Qian Qian Li, Luciano Gamberini, Mauro Conti, and
Giuseppe Sartori. 2018. Covert lie detection using
keyboard dynamics. Scientific reports 8, 1 (2018), 1976.

[8] Terence Sim and Rajkumar Janakiraman. 2007. Are
digraphs good for free-text keystroke dynamics?. In
Computer Vision and Pattern Recognition, 2007.
CVPR’07. IEEE Conference on. IEEE, 1–6.

Work-in-Progress/Demonstration Session L@S ’20, August 12–14, 2020, Virtual Event, USA

276

	Introduction
	Related Work
	Plagiarism Detection
	Keystroke Dynamics

	Design
	Web Application for Programming Exercises
	Analysis on Keyboard Events

	Evaluation
	Feature Extraction
	Time Interval Values
	N-graphs
	Comparison with Baseline Methods

	Contract Cheater Detection

	Conclusion
	Acknowledgements
	References

