
Non-Linear Editing of Text-Based Screencasts

Jungkook Park1∗, Yeong Hoon Park2∗, Alice Oh1

1School of Computing, KAIST, Republic of Korea
2Department of Computer Science and Engineering, University of Minnesota, USA

pjknkda@kaist.ac.kr, park1799@umn.edu, alice.oh@kaist.edu

ABSTRACT
Screencasts, where recordings of a computer screen are broad-
cast to a large audience on the web, are becoming popular as
an online educational tool. To provide rich interactions with
the text within screencasts, there are emerging platforms that
support text-based screencasts by recording every character
insertion and deletion from the creator and reconstructing its
playback on the viewer’s screen. However, these platforms
lack support for non-linear editing of screencasts, which in-
volves manipulating a sequence of text editing operations.
Since text editing operations are tightly coupled in sequence,
modifying an arbitrary part of the sequence often creates am-
biguity that yields multiple possible results that require user’s
choice for resolution. We present an editing tool with a non-
linear editing algorithm for text-based screencasts. The tool
allows users to edit any arbitrary part of a text-based screen-
cast while preserving the overall consistency of the screencast.
In an exploratory user study, all subjects successfully carried
out a variety of screencast editing tasks using our prototype
screencast editor.

Author Keywords
Screencast; Screencast editing; Non-linear editing;
Operational transformation

INTRODUCTION
Instructional screencasts are increasingly widespread as an
online educational tool for a variety of topics. Most screen-
casts are recorded in a video format because they are generally
created using a screen recording software. However, a video
is mainly a graphical, view-only medium, so it is difficult to
provide rich interactions with the in-video contents such as
dragging and copying text shown in the video. To provide
text-based interactions with the text within a screencast, there
are emerging online platforms that support text-based screen-
cast for demonstrating terminal sessions [6] or programming
tutorials [8, 7]. Instead of recording the screen as a video,

*Both authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

UIST ’18, October 14–17, 2018, Berlin, Germany

© 2018 ACM. ISBN 978-1-4503-5948-1/18/10. . . $15.00

DOI: https://doi.org/10.1145/3242587.3242654

these platforms capture text insertions and deletions at the
character level, as well as cursor and selection changes and
other relevant events from the creator’s editing activities. This
allows viewers to interact with the text at any moment in the
screencast. For example, when viewing a programming tuto-
rial screencast, a viewer may pause, edit and run the code to
better understand the content, and then resume watching the
screencast.

Despite the advantages of text-based screencasts, most of the
currently available systems lack adequate support for creating
such content compared to other media such as videos. In
particular, little effort has been devoted to supporting non-
linear editing of text-based screencasts. Thus it is very difficult
to edit an arbitrary part of a text-based screencast, in contrast
to videos whose non-linear editing can be easily done using
any modern video-editing software.

Implementing a non-linear editing system for text-based
screencasts is technically challenging. Unlike a video whose
frames are independent of each other, each text editing opera-
tion of a text-based screencast is dependent on all of its prior
operations. Hence, editing a part of the text-based screencast
involves adjusting the offsets (numeric values indicating in
which position the text is edited) of all subsequent text editing
operations. Moreover, rewriting the text editing operations
can introduce ambiguity in reconstructing the latter part of
the screencast. While several studies previously introduced
non-linear editing systems for document change history [2] or
code change history [4, 1, 5], most are based on snapshots or
line-based diff system, which cannot give users a character-
level control over the text editing operations for the purpose
of editing a screencast.

In this paper, we describe a non-linear editing algorithm for
text-based screencasts. We illustrate how the ambiguity of
text editing operations can occur during the non-linear editing
process and how such ambiguity can be detected and resolved
with user’s resolution. To evaluate the efficacy of our proposed
algorithm, we introduce a prototype of a text-based screencast
editor that provides non-linear editing functionality using the
proposed algorithm. Finally, we report the results of an ex-
ploratory user study with six subjects. Findings from the study
include: (i) our screencast editor is flexible enough to support
a diverse range of editing tasks, yet (ii) it is difficult to learn
and get used to screencast editing due to the complexity of
ambiguity resolution, and (iii) we identified potential opportu-

https://doi.org/10.1145/3242587.3242654

nities for improving the design based on the findings from the
exploratory user study.

The contributions of this paper are developing and presenting
the following:

• A non-linear editing algorithm for text-based screencasts.
• A prototype editor that implements non-linear editing func-

tionality for text-based screencasts.
• An exploratory study demonstrating that users can success-

fully edit a text-based screencast using our editor in various
editing scenarios.

RELATED WORK
In this section, we situate our work in two related research
fields, operational transformations and non-linear editing of
text editing history.

Operational Transformation
The operational transformation (OT) [10] is an effective ap-
proach to record document changes at a fine granularity. OT
was originally developed to support real-time collaborative
text editing, but it can also be used to track document changes
in virtue of its simple structure. While there are several dif-
ferent specifications of OT [13], we decided to adhere to the
most simple specification available to make our non-linear
editing algorithm simple and to work adaptively even when it
is applied with other extended OT specifications.

Most previous OT research addresses the problem of main-
taining the syntactic consistency of a shared document. In
case of a conflict, any of the possible syntactically consistent
resolutions is considered valid, without regard to semantic
correctness or user’s intention. Since an OT algorithm would
not automatically decide which outcome ‘makes sense’ the
most, the resulting text may not be semantically correct, or
violate the user’s intention [9, 11]. This problem of preserving
semantic consistency is generally addressed in an application-
specific manner to determine what makes sense for the partic-
ular context [12]. To the best of our knowledge, our approach
is the first to show users all possible resolutions and explic-
itly let them make the decision for resolving OT conflicts in
text-based screencasts.

Non-Linear Editing of Text Editing History
Timewarp [2] is a tool to support collaborative editing of a
document. Timewarp investigates the idea of allowing users
to interact with a document at any previous version of its his-
tory. A similar idea is adopted among the software developers
using Git VCS, where a user can rewrite history through ‘re-
base’ mechanism. It is a common practice among Git users
to use rebase to change the order of commits, squash or flat-
ten commits in order to better organize commit history [1,
3]. Furthermore, a system for demonstrating multi-stage code
examples has been proposed by [4] using Git commit history.
The system also allows users to edit intermediate stage of the
code by rebase-like rewriting mechanism. However, since
commit history based on Git stores text editing history in a
line-level granularity, reconstructing a screencast from such
history data has a limitation in the level of the expressive-
ness compared to a video. Also, these editing systems have

a constraint on the part of history that can be edited to be
merged without introducing content ambiguity. As far as we
know, our proposed non-linear editing algorithm is the first
algorithm to provide editing functionality of an arbitrary part
of a text-based screencast recorded at the character-level.

NON-LINEAR EDITING ALGORITHM
In this section, we propose an algorithm for non-linear editing
of text-based screencast. First, we introduce the symbolic no-
tations we use in describing the screencast editing algorithm.
Second, we define the Ambiguous Positioning Problem where
a non-linear edit can result in some of the subsequent OTs with
multiple possibilities for their positions. Third, we describe the
mechanism for detecting and resolving the positional ambigui-
ties during the editing process. Lastly, we explain the proposed
non-linear editing algorithm and describe how the ambiguity
can be detected and resolved by the user within the ambiguity
resolution process. Our implementation is publicly accessible
at https://github.com/elicast-research/non-linear-edit.

Notations
A text operational transformation (OT) is denoted as δ (s,e, t)
and is interpreted as “overwrite current text from position s
to position e with new text t”. For example, OT δ (0,1,“h”)
changes text “cat” to “hat”. This notation can represent text
inserting or deleting operation if s = e or t = “” respectively.
Also, when the current text (in the screencast) T is given,
we can calculate the inverse of OT as δ−1(s,e, t) = δ (s,s+
t.length,T.substring(s,e)]).

A text-based screencast is represented as a list of
text OTs. For example, a playback of a screencast
[δ (0,0,“a”),δ (1,1,“bc”),δ (0,2,“x”)] begins with an empty
string, then have 3 subsequent frames: “a”, “abc”, and “xc”.

In practice, each OT also includes a timestamp information and
other metadata, which we will omit in this paper to simplify
the algorithm description.

Ambiguous Positioning Problem
Unlike non-linear editing of video, editing a part of the screen-
cast without properly handling all of its subsequent OTs will
result in unexpected screencast content. This is because each
text editing operation of a text-based screencast is dependent
on all of its prior operations. For instance, suppose we have a
screencast with a list of OTs [δ (0,0,“Hi”),δ (2,2,“World”)]
whose playback begins with an empty string, then the next
frame shows “Hi” and the final frame shows “HiWorld”. Let
us assume we are trying to edit this screencast as if we wrote
the word “Hello” instead of “Hi” in the beginning. We might
want to replace the first OT to δ (0,0,“Hello”). However,
without transforming the subsequent OT δ (2,2,“World”), the
final content of the playback will become an unexpected text
“HeWorldllo”. To produce the intended text “HelloWorld”,
we would need to apply some transformation function to the
subsequent OTs so that the original OT δ (2,2,“World”) can
be transformed into δ (5,5,“World”).

However, calculating the amount of position shift of the subse-
quent OTs is often ambiguous; there can be multiple possible
outcomes that the ambiguity cannot be resolved unless the

https://github.com/elicast-research/non-linear-edit

a=

a=[]

a=x

a=x[] a=[x] a=[]x

t=0

t=2

t=1

t=3

original edited

possible outcomes

OT
new OT

screencast
content

δ(2,2,"x")

δ(2,2,"[]")

δ(2,2,"x") δ(3,3,"x") δ(4,4,"x")

≈

Figure 1. Transformation of the subsequent OT can vary depending
on the inserted screencast content or the intention of screencast cre-
ator. When a OT δ (2,2,“[]”) is newly inserted before the existing OT
δ (2,2,“x”), the existing OT can be transformed to 6 possible positions by
Algorithm 2, resulting different content at the end of the edited screen-
cast. This figure shows three examples among them.

a=

a=()()

a= x

a=(x)()

t=0

t=2

t=1

t=3

original edited

a= x &&

t=4 a=(x)&&()

OT
new OT

screencast
content

ambiguous
area

coupled

δ(2,2,"x")

δ(2,2,"()()")

δ(3,3,"x")

δ(5,5,"&&")

δ(3,3,"&&")

≈
≈

Figure 2. An example of coupled ambiguous area. The area is first cre-
ated by the inserted OT δ (2,2,“()()”) and then updated by the subse-
quent OTs. The orange-color-filled areas represent ambiguous areas and
the links between two ambiguous areas represent one to one mappings.
In this figure, we only display one example among several possible trans-
formations.

user’s choice is given. Thus, unless the intention of screencast
creator is known, transformed position of the subsequent OTs
cannot be determined. Figure 1 shows an example where a
subsequent OT can be transformed into one of the multiple
possible outcomes when a new OT is inserted in a prior time
frame. In the figure, the original screencast is “a=" (t=0)→
“a=x" (t=2) and the user inserts new OT δ (2,2,“[]”) between
the two operations. In this case, the newly inserted OT in-
troduces an area [2,2] which any OT overlaps with the area
becomes ambiguous. There can be 6 possible transformations
for this ambiguity (by Algorithm 2), and the figure shows three
examples among them.

Ambiguity Detection & Resolution
We first define ambiguous area, a text range where, if an OT
overlaps with the area, the transformation of the subsequent
OTs result in ambiguous positions. In the example shown in
Figure 1, any subsequent OT δ (a,b, t) whose [a,b] includes
2 (the last position of text “a=”) results in an ambiguous po-
sitioning problem. Thus, the ambiguous area of the example
becomes [2,2]. More concretely, an ambiguous area [a,b]
is created when a new OT δ (a,b, t) is inserted. Extending
the same rule, we can calculate the ambiguous areas given

Algorithm 1 An algorithm to get a coupled ambiguous area
1: function GETCOUPLEDAMBIGUOUSAREA(LN)

// Get a coupled ambiguous area introduced by OTs LN
2: Abe f ore← GetAmbiguousAreas(LN)

3: Linv
N ← LN .map(x→ x−1).reverse()

4: Aa f ter← GetAmbiguousAreas(Linv
N)

5: C← []
6: while Abe f ore , /0 do // always |Abe f ore|= |Aa f ter|
7: Pop leftmost interval abe f ore from Abe f ore
8: Pop leftmost interval aa f ter from Aa f ter
9: C.append((abe f ore→ aa f ter))

10: return C
11: function GETAMBIGUOUSAREAS(LN)

// Get ambiguous areas introduced by OTs LN
12: A←{}
13: for i ∈ {0,1, ...,N−1} do
14: a←{x ∈ R|L[i].s≤ x≤ L[i].e}
15: for j ∈ {i−1, i−2, ...,0} do
16: a← Γ(a,L[j].s,−L[j].t.length)
17: a← Γ(a,L[j].s,L[j].e−L[j].s)
18: A← A∪a
19: return A
20: function Γ(a, p,d)

// Transform area a at the position p with the amount d
21: return {x∈R|(x≤ p∧x∈ a)∨(p+d+≤ x∧x−d ∈ a)}

a list of OTs by iteratively combining the ambiguous area
created from each OT (GetAmbiguousAreas function in in
Algorithm 1) However, when the current text T and a list OTs
LN := [x1,x2, ...,xN] is given, the ambiguous area of xi (1 <
i≤ N) is not [xi.s,xi.e] because the start/end positions of xi are
based on the intermediate text T +∑

i−1
j=1 x j, not on the original

text T . Therefore, the algorithm adjusts the range [xi.s,xi.e] to
be based on T by removing the range affected by x j (1≤ j < i)
iteratively in reverse order. For example, the ambiguous area
of the second OT in [δ (0,1,“xy”),δ (1,5,“z”)] is calculated
by Γ(Γ([1,5],0,−2),0,1) = Γ([0,3],0,1) = {[0,0], [1,4]}.
If we detect any ambiguity from subsequent OTs using am-
biguous areas, we then identify possible positions of the trans-
formed OTs by using two coupled ambiguous areas; one that
corresponds to the original playback of the screencast, the
other that corresponds to the new version of the playback that
is being rewritten. Each of the areas on both sides has one
to one mapping. For example, in the case of Figure 2, the
coupled ambiguous area at the point of resolving the first sub-
sequent OT is {[2,2]→ [2,6]} because any OT located at the
position [2,2] can be transformed anywhere in the position
[2,6]. After the transformation of the first subsequent OT is
done, the coupled ambiguous areas are updated as follows:
original OT δ (2,2,“x”) divides original side of ambiguous
area into {[2,2], [3,3]} and transformed OT δ (3,3,“x”) di-
vides rewritten side of ambiguous area into {[2,3], [4,7]}. At
the same time, the mapping between the two sides is updated
as {[2,2]→ [2,3], [3,3]→ [4,7]}. Because all characters af-
fected by OTs in both sides are in the ambiguous areas, in

Algorithm 2 An algorithm to get possible transformations of
OT given coupled ambiguous area

1: function GETPOSSIBLETRANSFORM(C,x)
// Get all possible transformations of OT x given by the
coupled ambiguous area C

2: pa← aa f ter s.t. (abe f ore→ aa f ter) ∈C∧ x.s ∈ abe f ore
3: pb← aa f ter s.t. (abe f ore→ aa f ter) ∈C∧ x.e ∈ abe f ore
4: if pa = /0, then pa← [x.s+∆(C,x.s),x.s+∆(C,x.s)]
5: if pb = /0, then pb← [x.e+∆(C,x.e),x.e+∆(C,x.e)]
6: Px← []
7: for a′,b′ ∈ pa× pb do
8: if a′ ≤ b′ then
9: Px.append(δ (a′,b′,x.t))

10: return Px

11: function ∆(C, p)
// Get the amount of position shift at p by the coupled
ambiguous area C

12: d← ∑(abe f ore→aa f ter)∈C
∧abe f ore≤p

(
aa f ter.length−abe f ore.length

)
13: return d

every transformation step, the characters that are not included
in any ambiguous areas are identical for both sides.

The calculation of coupled ambiguous area is based on
the symmetric property of OT; if ambiguous areas cor-
responds to the original screencast is calculated by LN ,
then coupled ambiguous areas corresponds to the rewrit-
ten screencast is calculated by the symmetric inverse of LN
(GetCoupledAmbiguousArea function in Algorithm 1). Af-
ter we get coupled ambiguous area C from a newly added
screencast LN , we can get possible transformations of an ar-
bitrary OT when the OT is transformed by LN as follows
(GetPossibleTransform function in Algorithm 2):

• If an OT is located in an ambiguous area, then a transformed
OT can be located in any position within the corresponding
coupled ambiguous area (Line 2-3).

• If an OT is located in a non-ambiguous area, then a trans-
formed OT has no ambiguity and preserve same relative
position to the surrounding characters (Line 4-5).

Screencast Editing Algorithm
Once we calculate coupled ambiguous areas for a screencast,
we can define a function that inserts a new screencast content
into the middle of the original screencast. The insertion proce-
dure can be outlined as follows (InsertScreencast function in
Algorithm 3):

For the purpose of the algorithm description, let us consider a
non-linear editing scenario where a user makes a new screen-
cast recording LN to be inserted at the k-th frame of the original
screencast LO.

1. The algorithm first makes a new screencast L by concate-
nating LO[0 : k] and LN . Since the new screencast LN is
recorded based on the text at k-th frame built by LO[0 : k],

Algorithm 3 An algorithm to replace a part of screencast
1: function REPLACESCREENCAST(LO,LN ,s,e)

// Replace a part of screencast LO[s : e] with OTs LN

2: Linv
T ← LO[s : e].map(x→ x−1).reverse()

3: L′N ← Linv
T ·LN

4: L← InsertScreencast(LO,L′N ,e)
5: L′← L[0 : s] ·L[2e− s :]
6: return L′

7: function INSERTSCREENCAST(LO,LN ,k)
// Insert a new screencast LN between two OTs
LO[k−1] and LO[k]

8: L← LO[0 : k] ·LN
9: C← GetCoupledAmbiguousArea(LN)

10: for i ∈ {0,1, ..., |LO|− k−1} do
11: x := LO[k+ i]
12: Y ← GetPossibleTransform(C,x)
13: if |Y |> 1 then
14: Ask user to choose one y from Y
15: else
16: y← Y [0] // No ambiguity
17: L.append(y)
18: for (abe f ore→ aa f ter) ∈C do
19: abe f ore← Γ(Γ(abe f ore,x.s,x.s− x.e),x.s,x.t.length)
20: aa f ter← Γ(Γ(aa f ter,y.s,y.s− y.e),y.s,y.t.length)
21: return L

concatenation of LO[0 : k] and LN results in a valid screen-
cast. At this point, L does not yet contain the latter part of
the original screencast LO[k :].

2. Calculate the coupled ambiguous area C for the new screen-
cast LN . At this point, abe f ore ∈ C and aa f ter ∈ C rep-
resent the ambiguous areas based on LO[0 : k] and L[0 :
k+LN .length] respectively.

3. For each OT in the latter part of screencast, iteratively apply
ambiguity detection and resolution:

(a) Let i be the iteration index.
(b) Get P – all possible transformations of OT LO[k+ i]

according to C.
(c) If there is only one possible transformation p := P[0],

it means there is no ambiguity. However, if there are
more than one possible transformations, the algorithm
cannot determine the intended transformation of the
screencast creator. Thus, the algorithm asks user to
select one of the transformation among P. After user’s
selection, append the chosen transformation p ∈ P to
the incomplete screencast L.

(d) Update C according to the resolution p. After the
update, abe f ore and aa f ter represent ambiguous areas
of LN based on the text produced by LO[0 : k+ i+1]
and L[0 : k+LN .length+ i+1] respectively.

Non-linear editing of screencast can be done by using the algo-
rithm that inserts a screencast into the middle of another screen-
cast (ReplaceScreencast function in Algorithm 3). With the
insertion function, removing of arbitrary range of screencast

Figure 3. The interface of web-based screencast editor with non-linear
editing functionality.

(LO[s : e]) can be done by inserting the inverse of the OTs of
the removing part in reversed order (Linv

T) and then cut the
OTs of L0[s : e] ·Linv

T out after ambiguity resolution. Since Linv
T

is the inverse of L0[s : e], the coupled ambiguity area from
L0[s : e] ·Linv

T has no ambiguous area, thus the cutting oper-
ation can be done safely without introducing any ambiguity
on subsequent OTs. Then, replacing function can also be de-
fined as described in by combining removing existing part of
screencast and inserting a newly added screencast.

INTERFACE
We built a web-based screencast editor (Figure 3) as a proto-
type tool where a user can record a text-based screencast and
perform non-linear edits to the recorded screencast. This sec-
tion describes the user interface of the prototype highlighting
its key components that enable non-linear editing of text-based
screencasts.

Interface Overview
We designed the editor to mainly support the recording of
instructional programming demonstrations, so the editor is
equipped with a code editor with Python 3 syntax highlight-
ing. The code editor is used for both recording and editing
a text-based screencast. Users can play, pause, and seek the
screencast using the play/pause button and the timeline slider.
The record button is only visible when a user reaches the end
of the screencast; user can press the record button to append a
new recording at the end of the screencast. While recording,
all text editing operations in the editor are recorded along with
a voice narration ingested from a microphone device. The
“Start Selection” button located at the lower center starts a
non-linear editing of the screencast.

Edit Range Selection
User starts editing of the screencast by clicking the “Start Se-
lection” button. Then, the editor changes to the selection mode
as shown in Figure 4. In the selection mode, user is asked to
select a part of the screencast to be re-recorded. The start posi-
tion of the selection is automatically set to the current thumb
position when the user clicks the “Start Selection” button.

Figure 4. The interface for selecting a part of the screencast to be re-
recorded. The selected range is marked in yellow on the timeline slider.
The characters added in the selected part of the screencast are high-
lighted in green in the code editor.

User can set the end of the selection range by seeking the
timeline slider. She can press the play/pause button and seek
the timeline slider as usual, except she cannot move the thumb
position left to the beginning of the selection. The selected
range is displayed in yellow on the timeline slider and the
characters added in the selected part of the screencast are
highlighted in green in the code editor.

Re-Record Screencast
After selecting the part of the screencast to be re-recorded,
user can start recording a new screencast by clicking the “Re-
Record Selection” button. Then, recording starts immediately
for a new screencast. Since the new screencast will overwrite
the selected part of the screencast, the editor makes an initial
state of the new screencast identical to the beginning state of
the selected part of the screencast. Thus the user will receive
the same experience when she appends a new screencast at the
end of the existing screencast.

After recording, user clicks the pause button to stop the new
recording, then the editor automatically replaces the selected
part of the screencast with the new recording using the non-
linear editing algorithm. If no ambiguity occurs, the interface
returns to the default mode with the edited screencast; other-
wise, it turns into the ambiguity resolution mode.

Ambiguity Resolution
If ambiguity is detected from an edit, the editor turns into
the ambiguity resolution mode and the “Ambiguity Resolver”
modal appears. The modal shows 4 code editors: the two
editors at the top show the effect of the OT in the original
screencast, and the two editors at the bottom show the expected
effect of the OT in the currently editing screencast. To give
a quick preview of the effect when the OT is applied, the
removed text by the OT is highlighted in red and inserted text
by the OT is highlighted in green. The user can explore the
possible transformations of the OT by dragging ‘from’ and ‘to’
handle in the left bottom editor. Each of the handles can only
be moved within the range calculated by the editing algorithm.
After the user found the intended transformation, the user
can click the “Resolve” button to resolve the ambiguity. The
modal shows each of the ambiguities until all ambiguities are
resolved, and then the interface returns to the default mode
with the edited screencast.

Figure 5. The interface of ambiguity resolver. For an OT that causes am-
biguity, the resolver shows 4 code editors where each show the content of
(top) the original screencast (bottom) the edited screencast (left) before
the OT is applied (right) after the OT is applied. Users can choose one of
the possible transformations of OT by dragging ‘from’ and ‘to’ handles
within the editor in the lower left.

EVALUATION
We performed an exploratory study with six participants where
each participant recorded a 10-minute screencast and edited
the screencast following a given set of general editing tasks
designed to be as close as possible to real-world use cases. To
investigate the efficacy of our screencast editing algorithm and
users’ screencast editing patterns and behaviors, we designed
the experiment to answer the following questions: (i) Can
users successfully edit a screencast and get desired results in
diverse usage scenarios? (ii) What kinds of different editing
patterns emerge when carrying out different editing tasks? (iii)
How difficult is it for a user to learn and get used to screen-
cast editing features (i.e. timeline selection and ambiguity
resolution)?

Procedure
We recruited 6 participants (4 graduate students and 2 recent
graduates) who have served as teaching assistants for intro-
ductory computer science courses. At the beginning of each
1.5-hour session, we gave a 10-minute tutorial on how to
record and edit a screencast using our tool. As part of the
tutorial, we prepared 5 representative cases of editing the past
recording of a screencast involving different usages of timeline
selection and conflict resolution, which we demonstrated first
then let the participants repeat as exercises.

Then, we asked the participants to complete 5 tasks in order,
first of which is to create the initial recording of a screencast
and the remaining 4 tasks to edit the recorded screencast in
various ways. We encouraged the participants to think aloud
when editing the screencast. The tasks are designed to resem-
ble possible real world scenarios so that a range of natural

Task # Edits Median Time Spent
for Ambiguity ResolutionAll w/ Ambiguity (%)

2 91 37 (40.7%) 18.56s
3 26 5 (19.2%) 47.79s
4 36 27 (75.0%) 21.04s
5 34 23 (67.6%) 14.79s

Table 1. The statistics of the participants’ screencast edits for each task.
Task 1 is excluded since it does not involve non-linear edits.

screencast edit behaviors would be observed. The tasks are
described as follows:

1. Record a 10-minute long screencast on how to implement
a basic hash table in Python 3. Implement a hash table
class with put(key,value) and get(key) methods without
docstring, then write test cases.

2. Choose and edit 3 parts where your mistakes are recorded
or any short span of the screencast that is not smooth or you
want to re-record.

3. Edit the screencast such that it shows you implementing
remove(key) method after implementing put and get meth-
ods but before writing test cases.

4. Choose a variable or method argument that is referenced at
least 3 times, and edit the screencast such that the variable
(argument) has been defined and referenced in a different
name from the beginning of its existence.

5. Edit the screencast such that it shows you writing docstring
for each put and get method when you first begin imple-
menting the methods in the screencast.

We recorded each participant’s screen and voice as well as
logging all screencast editing events with timestamps through-
out the experiment. Upon completing all tasks, participants
were asked to answer 4 post-study survey questionnaires about
their perceived learnability and efficiency of the timeline se-
lection and ambiguity resolution features, and we conducted a
semi-structured interview for 15 minutes.

Results
All participants (S1-S6) completed all 5 tasks after spend-
ing 56 minutes on average; they could successfully record a
screencast and edit different parts of the screencast. For Task
2 through Task 5, each participant made 31 screencast edits
on average, and 49.7% (94/189) of the edits introduced an am-
biguity that needed to be resolved explicitly by the participant.
In such ambiguous cases, they had to make 1.46 decisions
on average for choosing one of the possible transformations,
and they spent median time of 19.1 seconds to complete the
ambiguity resolutions for the edit (7.1 seconds for choosing
each single transformation).

In order to compare the screencast editing patterns between
different tasks, we analyzed the number of total screencast
edits and the number of edits that caused ambiguity for each
task, and the median time spent for doing ambiguity resolu-
tions when an edit introduced ambiguity, as shown in Table 1.

We found that certain types of edits can have a significantly
lower chance of introducing ambiguity than other types of
edits. In particular, the screencast edits for Task 3, mostly
performed with zero-length timeline selection and a few big
chunk of insertions (remove method definition) surrounded by
whitespaces, are not further edited in the subsequent part of
the screencast. In contrast, the edits for Task 4 had the highest
chance of creating ambiguity since variable declarations are
almost always followed by nearby text changes.

Although all participants successfully completed the given
editing tasks, they felt it is not easy to fully understand the pro-
cess of ambiguity resolution. In the post-study survey, partici-
pants responded to the 5-point Likert survey questionnaires (1:
Strongly Disagree, 5: Strongly Agree) that while it was easy to
learn (µ = 4.50, σ = 0.84) and efficiently use once they under-
stood timeline selection feature (µ = 4.67, σ = 0.52), ambigu-
ity resolution was not easy to learn (µ = 2.17, σ = 1.17) and
they were not able to resolve ambiguities efficiently even after
learning the feature (µ = 2.83, σ = 0.98). Here we describe
the key findings from their experience of using ambiguity
resolution based on the analysis of the post-study interview.

Rich Context is Needed for Ambiguity Resolution
5 out of 6 participants mentioned that, before they pressed
‘finish recording’ button, they could not predict whether an
ambiguity would occur, or at which point in the screencast an
ambiguity would occur, because they could not recall every
detail of the recorded screencast in high precision. S4 said “I
cannot be conscious of the whole changes from the beginning
to end when I’m editing”. Moreover, there were instances
where participants completely forgot some of the changes they
made while recording the screencast. S4 said: “I think I forget
about the word entirely when I delete it”. S3 mentioned that
he did not know the fact that he had a habit of “unconsciously
inserting characters and removing them while I’m thinking”,
so he could not recall that those changes were recorded at all.

Participants argued they needed to be given more context
in order for them to recall what has happened earlier and
resolve ambiguity more easily. In particular, 3 participants felt
that viewing only the Next Frame is not enough for them to
remember what other changes were made right after, as S2
mentioned: “I don’t know what comes next.. with this one
character diff.”. Participants suggested that tool should be
able to somehow visualize several contiguous changes that
comes after, or all relevant changes in the subsequent part of
screencast.

Different Strategies of Dealing with Ambiguities
Some participants described their thoughts on the complexity
of ambiguity resolution. S6 said: “I think the concept itself
is confusing in the first place because the process is naturally
unintuitive for human to understand, like RSA algorithm. I
just keep forgetting how it works because it’s so unnatural.”
Also, to cope with the complex nature of ambiguity resolution,
they developed different strategies of their own to simplify the
work.

Some participants tried to avoid causing lots of cumbersome
ambiguities as possible by selecting a coarse-grained time

range when multiple text changes are made contiguously
within single nearby location and re-record the whole part.
For example, when S1 recorded several mistakes while writ-
ing a docstring for Task 5, instead of editing the compact time
range of the recording where he makes the mistakes, he cut
most part of the recording and replaced with a new lengthy
recording, so that he is left with a few trivial ambiguities to
resolve.

We also observed that some participants were editing back-
wards in time, so they do not have to deal with ambiguities
they would have had otherwise. For example, when S6 was
trying to eliminate a mistake in Task 2 where he defined an
unused variable which he later deleted, he first eliminated the
latter part where he deletes the variable, then eliminated the
part he defines the variable. These edits did not cause any
ambiguity, whereas if he eliminated the earlier part first an
ambiguity would have occurred due to the changes in the latter
part.

Some other participants said they would prefer to edit screen-
cast with zero-length time range selection whenever possible,
since it has lower chance of causing ambiguity because there
are no previous recording that are replaced; it has a zero-length
ambiguous area.

Users Resolve Ambiguities with Little Cognitive Effort
Lastly, we found that the participants tended not to give much
cognitive effort when choosing the desired transformation for
an ambiguity, even if they fully understood what the from/to
handle represents and how it affects the subsequent part of
the screencast. Most of the time, however, they were able
to choose the desired transformation simply by focusing on
how the Next Frame changes as they moved each handle’s
position, until the Next Frame looked as they desired. Among
three participants who mentioned this in the interview, S6 said:

“I didn’t give too much thought into ‘why’ or ‘how’ before
every move because it’s complicated. Besides, it wasn’t really
necessary to think about it to make the change as I wanted.”
and S2 mentioned that he developed some level of “intuition”
about how dragging each from/to handle would change the
next frame.

Discussion and Future Work
One of the goals of our exploratory user study was to serve as
a proof-of-concept to identify the potential opportunities for
further improvements. The study revealed both the potential
and limitations of the non-linear editing in its current form.
On a positive note, we observed that the screencast editing
feature is flexible enough to support a diverse range of editing
scenarios. Since the alternative to the non-linear editing ap-
proach is users having to re-record the entire latter part of the
screencast from the point of edit, non-linear editing would be
preferable in most editing scenarios, especially if users need
to correct a mistake they have made early on. However, the
study also revealed that the additional amount of effort for
ambiguity resolution is often a significant burden for users.
Thus, further research effort should be focused on reducing
user’s burden of performing ambiguity resolution. We suggest
two prominent directions for usability improvement based on
the findings from the study.

As the users stated during the interviews, users often have
difficulty understanding how each choice of ambiguity reso-
lution would impact the latter part of the screencast, largely
because they often do not recall every fine-grained text edits
in the screencast they are recording. Thus, we believe further
research is needed in exploring the design space of conflict
resolution interface to give users a more comprehensive view
of what changes they are making during ambiguity resolution.
In particular, the interface should be able to visualize a more
complete picture of each resolution outcome than just showing
only the “Next Frame”, and make it easier to navigate the
screencast during ambiguity resolution to help users get more
context by looking at the previous text edits they may have
forgotten.

In addition, reflecting on the fact that most participants de-
veloped their own unique strategies with the goal of avoiding
complex ambiguity resolutions, another possible direction for
future work would be to simplify the ambiguity resolution pro-
cess itself, such that it can be perceived not as a complicated
process that often yields unpredictable results, but as a series
of simple tasks that require a small amount of cognitive effort.
One idea is to provide a “recommended” transformation as de-
fault, by automatically inferring the intention of the edit using
a domain-specific algorithm (e.g. in the case of programming
screencasts, a programming language parser) or machine learn-
ing model. For example, suppose a user made a non-linear edit
and needs to choose a transformation between (b) and (c) in
Figure 1, an algorithm could analyze the content and infer that
(b) a = [x] is a more “preferable” choice for the transforma-
tion than the other. If such “preferable” transformation could
be accurately inferred each time and shown to the user as a
“recommended” choice of transformation, users would be able
to resolve the ambiguity with much less cognitive effort.

CONCLUSION
Text-based screencasts are widely used, but they are quite cum-
bersome to edit, unlike videos with the modern editing tools
that allow flexible and easy editing. In this paper, we intro-
duced a non-linear editing algorithm for text-based screencasts
and a prototype screencast editor that provides non-linear edit-
ing functionality using the proposed algorithm. We conducted
an exploratory study with six subjects demonstrating that users
were successful in using our prototype screencast editor to cre-
ate and edit a screencast in various editing scenarios. While the
participants found the ambiguity resolution process difficult
to learn and use due to its complex nature, the study revealed
some possible directions for improvements, such as the editor
providing more context, and the editor letting users to be fully
aware of the changes made from ambiguity resolution.

ACKNOWLEDGEMENTS
This research was supported by Next-Generation Information
Computing Development Program through the National Re-
search Foundation of Korea (NRF) funded by the Ministry of
Science, ICT (2017M3C4A7065962).

REFERENCES
1. Christian Bird, Peter C Rigby, Earl T Barr, David J

Hamilton, Daniel M German, and Prem Devanbu. 2009.
The Promises and Perils of Mining Git. In Mining
Software Repositories, 2009. MSR’09. 6th IEEE
International Working Conference on. IEEE, 1–10.

2. W Keith Edwards and Elizabeth D Mynatt. 1997.
Timewarp: Techniques for Autonomous Collaboration. In
Proceedings of the ACM SIGCHI Conference on Human
factors in computing systems. ACM, 218–225.

3. Daniel M German, Bram Adams, and Ahmed E Hassan.
2016. Continuously Mining Distributed Version Control
Systems: an Empirical Study of How Linux Uses Git.
Empirical Software Engineering 21, 1 (2016), 260–299.

4. Shiry Ginosar, De Pombo, Luis Fernando, Maneesh
Agrawala, and Bjorn Hartmann. 2013. Authoring
multi-stage code examples with editable code histories.
In Proceedings of the 26th annual ACM symposium on
User interface software and technology. ACM, 485–494.

5. Shinpei Hayashi, Takayuki Omori, Teruyoshi Zenmyo,
Katsuhisa Maruyama, and Motoshi Saeki. 2012.
Refactoring Edit History of Source Code. In Software
Maintenance (ICSM), 2012 28th IEEE International
Conference on. IEEE, 617–620.

6. Marcin Kulik and contributors. 2012. asciinema.
https://asciinema.org. (2012).

7. Qualified. 2018. Qualified: Codecast.
https://www.qualified.io/codecast. (2018).

8. Scrimba. 2017. Scrimba. https://scrimba.com. (2017).

9. Chengzheng Sun. 2010. OT FAQ: Can OT solve semantic
consistency problems? http://www3.ntu.edu.sg/home/
czsun/projects/otfaq/#_Toc321146139. (2010).

10. Chengzheng Sun and Clarence Ellis. 1998. Operational
Transformation in Real-Time Group Editors: Issues,
Algorithms, and Achievements. In Proceedings of the
1998 ACM conference on Computer supported
cooperative work. ACM, 59–68.

11. Chengzheng Sun, Xiaohua Jia, Yanchun Zhang, Yun
Yang, and David Chen. 1998. Achieving convergence,
causality preservation, and intention preservation in
real-time cooperative editing systems. ACM Transactions
on Computer-Human Interaction (TOCHI) 5, 1 (1998),
63–108.

12. David Sun, Chengzheng Sun, Steven Xia, and Haifeng
Shen. 2012. Creative conflict resolution in realtime
collaborative editing systems. In Proceedings of the ACM
2012 Conference on Computer Supported Cooperative
Work. ACM, 1411–1420.

13. David Sun, Steven Xia, Chengzheng Sun, and David
Chen. 2004. Operational Transformation for
Collaborative Word Processing. In Proceedings of the
2004 ACM conference on Computer supported
cooperative work. ACM, 437–446.

https://asciinema.org
https://www.qualified.io/codecast
https://scrimba.com
http://www3.ntu.edu.sg/home/czsun/projects/otfaq/#_Toc321146139
http://www3.ntu.edu.sg/home/czsun/projects/otfaq/#_Toc321146139

	Introduction
	Related Work
	Operational Transformation
	Non-Linear Editing of Text Editing History

	Non-linear Editing Algorithm
	Notations
	Ambiguous Positioning Problem
	Ambiguity Detection & Resolution
	Screencast Editing Algorithm

	Interface
	Interface Overview
	Edit Range Selection
	Re-Record Screencast
	Ambiguity Resolution

	Evaluation
	Procedure
	Results
	Rich Context is Needed for Ambiguity Resolution
	Different Strategies of Dealing with Ambiguities
	Users Resolve Ambiguities with Little Cognitive Effort

	Discussion and Future Work

	Conclusion
	Acknowledgements
	References

